ﻻ يوجد ملخص باللغة العربية
Given the parallelism between the physical properties of Ce and Yb based magnets and heavy fermions due to the electron-hole symmetry, it has been rather odd that the transition temperature of the Yb based compounds is normally very small, as low as $sim$ 1 K or even lower, whereas Ce counterparts may often have the transition temperature well exceeding 10 K. Here, we report our experimental discovery of the transition temperature reaching 20 K for the first time in a Yb based compound at ambient pressure. The Mn substitution at the Al site in an intermediate valence state of $alpha$-YbAlB$_{4}$ not only induces antiferromagnetic transition at a record high temperature of 20 K but also transforms the heavy fermion liquid state in $alpha$-YbAlB$_{4}$ into a highly resistive metallic state proximate to a Kondo insulator.
Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems
We report on the first study of the noncentrosymmetric ternary carbide YbCoC$_{2}$. Our magnetization, specific heat, resistivity and neutron diffraction measurements consistently show that the system behaves as a heavy-fermion compound, displaying a
We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, $tau_{rm{AFM}}$ = ($frac{1}{2} frac{1}{2} frac{1}{2}$), and ordered moments that align
The Kondo-Spin Glass competition is studied in a theoretical model of a Kondo lattice with an intra-site Kondo type exchange interaction treated within the mean field approximation, an inter-site quantum Ising exchange interaction with random couplin
We have succeeded in growing single crystals of the heavy-fermion superconductor CeCo(In1-xZnx)5 with x<=0.07. Measurements of specific heat, electrical resistivity, dc magnetization and ac susceptibility revealed that the superconducting (SC) transi