ﻻ يوجد ملخص باللغة العربية
We report on the first study of the noncentrosymmetric ternary carbide YbCoC$_{2}$. Our magnetization, specific heat, resistivity and neutron diffraction measurements consistently show that the system behaves as a heavy-fermion compound, displaying an amplitude-modulated magnetic structure below the Neel temperature reaching $T_{N}$ = 33 K under pressure. Such a large value, being the highest among the Yb-based systems, is explained in the light of our ab initio calculations, which show that the 4f electronic states of Yb have a dual nature -- i.e., due to their strong hybridization with the 3d states of Co, 4f states expose both localized and itinerant properties.
We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, $tau_{rm{AFM}}$ = ($frac{1}{2} frac{1}{2} frac{1}{2}$), and ordered moments that align
We report a study on the interplay between antiferromagnetism (AFM) and superconductivity (SC) in a heavy-fermion compound CeRhIn$_5$ under pressure $P=1.75$ GPa. The onset of the magnetic order is evidenced from a clear split of $^{115}$In-NQR spect
We report on the anisotropic properties of Pauli-limited superconductivity (SC) and antiferromagnetism (AFM) in the solid solutions CeCo(In_{1-x}Zn_x)_5 (x<=0.07). In CeCo(In_{1-x}Zn_x)_5, the SC transition temperature T_c is continuously reduced fro
The tilted balance among competing interactions can yield a rich variety of ground states of quantum matter. In most Ce-based heavy fermion systems, this can often be qualitatively described by the famous Doniach phase diagram, owing to the competiti
Ce 3d-4f resonant angle-resolved photoemission measurements on CeCoGe$_{1.2}$Si$_{0.8}$ and CeCoSi$_{2}$ have been performed to understand the Fermi surface topology as a function of hybridization strength between Ce 4$f$- and conduction electrons in