ﻻ يوجد ملخص باللغة العربية
We study the WLP and SLP of artinian monomial ideals in $S=mathbb{K}[x_1,dots ,x_n]$ via studying their minimal free resolutions. We study the Lefschetz properties of such ideals where the minimal free resolution of $S/I$ is linear for at least $n-2$ steps. We give an affirmative answer to a conjecture of Eisenbud, Huneke and Ulrich for artinian monomial ideals with almost linear resolutions.
We determine a sharp lower bound for the Hilbert function in degree $d$ of a monomial algebra failing the weak Lefschetz property over a polynomial ring with $n$ variables and generated in degree $d$, for any $dgeq 2$ and $ngeq 3$. We consider artini
In this paper, we study the strong Lefschetz property of artinian complete intersection ideals generated by products of linear forms. We prove the strong Lefschetz property for a class of such ideals with binomial generators.
Given an ideal $I=(f_1,ldots,f_r)$ in $mathbb C[x_1,ldots,x_n]$ generated by forms of degree $d$, and an integer $k>1$, how large can the ideal $I^k$ be, i.e., how small can the Hilbert function of $mathbb C[x_1,ldots,x_n]/I^k$ be? If $rle n$ the sma
Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, s
An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of com