ترغب بنشر مسار تعليمي؟ اضغط هنا

The weak Lefschetz property of equigenerated monomial ideals

111   0   0.0 ( 0 )
 نشر من قبل Nasrin Altafi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine a sharp lower bound for the Hilbert function in degree $d$ of a monomial algebra failing the weak Lefschetz property over a polynomial ring with $n$ variables and generated in degree $d$, for any $dgeq 2$ and $ngeq 3$. We consider artinian ideals in the polynomial ring with $n$ variables generated by homogeneous polynomials of degree $d$ invariant under an action of the cyclic group $mathbb{Z}/dmathbb{Z}$, for any $ngeq 3$ and any $dgeq 2$. We give a complete classification of such ideals in terms of the weak Lefschetz property depending on the action.



قيم البحث

اقرأ أيضاً

182 - Mats Boij , Ralf Froberg , 2016
Given an ideal $I=(f_1,ldots,f_r)$ in $mathbb C[x_1,ldots,x_n]$ generated by forms of degree $d$, and an integer $k>1$, how large can the ideal $I^k$ be, i.e., how small can the Hilbert function of $mathbb C[x_1,ldots,x_n]/I^k$ be? If $rle n$ the sma llest Hilbert function is achieved by any complete intersection, but for $r>n$, the question is in general very hard to answer. We study the problem for $r=n+1$, where the result is known for $k=1$. We also study a closely related problem, the Weak Lefschetz property, for $S/I^k$, where $I$ is the ideal generated by the $d$th powers of the variables.
We study the WLP and SLP of artinian monomial ideals in $S=mathbb{K}[x_1,dots ,x_n]$ via studying their minimal free resolutions. We study the Lefschetz properties of such ideals where the minimal free resolution of $S/I$ is linear for at least $n-2$ steps. We give an affirmative answer to a conjecture of Eisenbud, Huneke and Ulrich for artinian monomial ideals with almost linear resolutions.
We prove a characterization of the j-multiplicity of a monomial ideal as the normalized volume of a polytopal complex. Our result is an extension of Teissiers volume-theoretic interpretation of the Hilbert-Samuel multiplicity for m-primary monomial i deals. We also give a description of the epsilon-multiplicity of a monomial ideal in terms of the volume of a region.
We study the problem of whether an arbitrary codimension three graded artinian Gorenstein algebra has the Weak Lefschetz Property. We reduce this problem to checking whether it holds for all compressed Gorenstein algebras of odd socle degree. In the first open case, namely Hilbert function (1,3,6,6,3,1), we give a complete answer in every characteristic by translating the problem to one of studying geometric aspects of certain morphisms from $mathbb P^2$ to $mathbb P^3$, and Hesse configurations in $mathbb P^2$.
Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, s ay of period $g$ and degree $c$. For $n gg 0$ say [ f^I_J(n) = a_c(n)n^c + a_{c-1}(n)n^{c-1} + text{lower terms}, ] where for $i = 0, ldots, c$, $a_i colon mathbb{N} rt mathbb{Z}$ are periodic functions of period $g$ and $a_c eq 0$. In an earlier paper we (together with Herzog and Verma) proved that $dim I_n(J)/I^n$ is constant for $n gg 0$ and $a_c(-)$ is a constant. In this paper we prove that if $I$ is generated by some elements of the same degree and height $I geq 2$ then $a_{c-1}(-)$ is also a constant.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا