ﻻ يوجد ملخص باللغة العربية
At present, hydrogen-based compounds constitute one of the most promising classes of materials for applications as a phonon-mediated high-temperature superconductors. Herein, the behavior of the superconducting phase in tellurium hydride (HTe) at high pressure ($p=300$ GPa) is analyzed in details, by using the isotropic Migdal-Eliashberg equations. The chosen pressure conditions are considered here as a case study which corresponds to the highest critical temperature value ($T_{c}$) in the analyzed material, as determined within recent density functional theory simulations. It is found that the Migdal-Eliashberg formalism, which constitutes a strong-coupling generalization of the Bardeen-Cooper-Schrieffer (BCS) theory, predicts that the critical temperature value ($T_{c}=52.73$ K) is higher than previous estimates of the McMillan formula. Further investigations show that the characteristic dimensionless ratios for the the thermodynamic critical field, the specific heat for the superconducting state, and the superconducting band gap exceeds the limits of the BCS theory. In this context, also the effective electron mass is not equal to the bare electron mass as provided by the BCS theory. On the basis of these findings it is predicted that the strong-coupling and retardation effects play pivotal role in the superconducting phase of HTe at 300 GPa, in agreement with similar theoretical estimates for the sibling hydrogen and hydrogen-based compounds. Hence, it is suggested that the superconducting state in HTe cannot be properly described within the mean-field picture of the BCS theory.
Various tin hydrides SnHx (x = 4, 8, 12, 14) have been theoretically predicted to be stable at high pressures and to show high-critical-temperature superconductivity with Tc ranging from about 70 to 100 K. However, experimental verifications for any
At present, metal hydrides are considered highly promising materials for phonon-mediated superconductors, that exhibit high values of the critical temperature. In the present study, the superconducting properties of the compressed selenium hydride in
The recently discovered (Rb,Cs)EuFe4As4 compounds exhibit an unusual combination of superconductivity (Tc = 35 K) and ferromagnetism (Tm = 15 K). We have performed a series of x-ray diffraction, ac magnetic susceptibility, dc magnetization, and elect
Recently, the discovery of room-temperature superconductivity (SC) was experimentally realized in the fcc phase of LaH$_{10}$ under megabar pressure. Specifically, the isotope effect of $T_{rm c}$ was measured by the replacement of hydrogen (H) with
Noble metals adopt close-packed structures at ambient pressure and rarely undergo structural transformation at high pressures. Platinum (Pt), in particular, is normally considered to be unreactive and is therefore not expected to form hydrides under