ﻻ يوجد ملخص باللغة العربية
Recently, the discovery of room-temperature superconductivity (SC) was experimentally realized in the fcc phase of LaH$_{10}$ under megabar pressure. Specifically, the isotope effect of $T_{rm c}$ was measured by the replacement of hydrogen (H) with deuterium (D), demonstrating a driving role of phonons in the observed room-temperature SC. Herein, based on the first-principles calculations within the harmonic approximation, we reveal that (i) the identical electron-phonon coupling constants of fcc LaH$_{10}$ and LaD$_{10}$ decrease monotonously with increasing pressure and (ii) the isotope effect of $T_{rm c}$ is nearly proportional to $M^{-{alpha}}$ ($M$: ionic mass) with ${alpha}$ ${approx}$ 0.465, irrespective of pressure. The predicted value of ${alpha}$ agrees well with the experimental one (${alpha}=0.46$) measured at around 150 GPa. Thus, our findings provide a theoretical confirmation of the conventional electron-phonon coupling mechanism in a newly discovered room-temperature superconductor of compressed LaH$_{10}$.
The discovery of superconductivity at 200 K in the hydrogen sulfide system at large pressures [1] was a clear demonstration that hydrogen-rich materials can be high-temperature superconductors. The recent synthesis of LaH$_{10}$ with a superconductin
We report the influence on the superconducting critical temperature $T_c$ in doped SrTiO$_3$ of the substitution of the natural $^{16}$O atoms by the heavier isotope $^{18}$O. We observe that for a wide range of doping this substitution causes a stro
Various tin hydrides SnHx (x = 4, 8, 12, 14) have been theoretically predicted to be stable at high pressures and to show high-critical-temperature superconductivity with Tc ranging from about 70 to 100 K. However, experimental verifications for any
At present, hydrogen-based compounds constitute one of the most promising classes of materials for applications as a phonon-mediated high-temperature superconductors. Herein, the behavior of the superconducting phase in tellurium hydride (HTe) at hig
Noble metals adopt close-packed structures at ambient pressure and rarely undergo structural transformation at high pressures. Platinum (Pt), in particular, is normally considered to be unreactive and is therefore not expected to form hydrides under