ﻻ يوجد ملخص باللغة العربية
We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut theorem for boundary regions, applied recently to develop a bit-thread interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous min flow-max cut theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworths theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.
The continuous min flow-max cut principle is used to reformulate the complexity=volume conjecture using Lorentzian flows -- divergenceless norm-bounded timelike vector fields whose minimum flux through a boundary subregion is equal to the volume of t
We consider the consequences of the dual gravitational charges for the phase space of radiating modes, and find that they imply a new soft NUT theorem. In particular, we argue that the existence of these new charges removes the need for imposing boun
We show that the Hawking--Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of $C^{1, 1}$-regularity. We formulate appropriate wea
We analyze the single subleading soft graviton theorem in $(d+1)$ dimensions under compactification on $S^1$. This produces the single soft theorems for the graviton, vector and scalar fields in $d$ dimension. For the compactification of $11$-dimensi
We show that the first law for the rotating Taub-NUT is straightforwardly established with the surface charge method. The entropy is explicitly found as a charge, and its value is not proportional to the horizon area. We conclude that there are unavo