ﻻ يوجد ملخص باللغة العربية
We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform coerciveness assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove global-in-time existence of weak solutions by means of a semi-implicit version of the Jordan-Kinderlehrer-Otto scheme. Our approach allows to consider nonlocal interaction terms not necessarily yielding a formal gradient flow structure.
We study a class of free boundary systems with nonlocal diffusion, which are natural extensions of the corresponding free boundary problems of reaction diffusion systems. As before the free boundary represents the spreading front of the species, but
We consider an epidemic model with nonlocal diffusion and free boundaries, which describes the evolution of an infectious agents with nonlocal diffusion and the infected humans without diffusion, where humans get infected by the agents, and infected
We study a Cahn-Hilliard-Hele-Shaw (or Cahn-Hilliard-Darcy) system for an incompressible mixture of two fluids. The relative concentration difference $varphi$ is governed by a convective nonlocal Cahn-Hilliard equation with degenerate mobility and lo
Conditions for the existence and uniqueness of weak solutions for a class of nonlinear nonlocal degenerate parabolic equations are established. The asymptotic behaviour of the solutions as time tends to infinity are also studied. In particular, the f
In this paper, the finite time extinction of solutions to the fast diffusion system $u_t=mathrm{div}(| abla u|^{p-2} abla u)+v^m$, $v_t=mathrm{div}(| abla v|^{q-2} abla v)+u^n$ is investigated, where $1<p,q<2$, $m,n>0$ and $Omegasubset mathbb{R}^N (N