ﻻ يوجد ملخص باللغة العربية
We study a class of free boundary systems with nonlocal diffusion, which are natural extensions of the corresponding free boundary problems of reaction diffusion systems. As before the free boundary represents the spreading front of the species, but here the population dispersal is described by nonlocal diffusion instead of local diffusion. We prove that such a nonlocal diffusion problem with free boundary has a unique global solution, and for models with Lotka-Volterra type competition or predator-prey growth terms, we show that a spreading-vanishing dichotomy holds, and obtain criteria for spreading and vanishing; moreover, for the weak competition case and for the weak predation case, we can determine the long-time asymptotic limit of the solution when spreading happens. Compared with the single species free boundary model with nonlocal diffusion considered recently in cite{CDLL}, and the two species cases with local diffusion extensively studied in the literature, the situation considered in this paper involves several extra difficulties, which are overcome by the use of some new techniques.
We consider a class of cooperative reaction-diffusion systems with free boundaries in one space dimension, where the diffusion terms are nonlocal, given by integral operators involving suitable kernel functions, and they are allowed not to appear in
We consider an epidemic model with nonlocal diffusion and free boundaries, which describes the evolution of an infectious agents with nonlocal diffusion and the infected humans without diffusion, where humans get infected by the agents, and infected
We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a unif
In this paper, we proceed to study the nonlocal diffusion problem proposed by Li and Wang [8], where the left boundary is fixed, while the right boundary is a nonlocal free boundary. We first give some accurate estimates on the longtime behavior by c
In Cao, Du, Li and Li [8], a nonlocal diffusion model with free boundaries extending the local diffusion model of Du and Lin [12] was introduced and studied. For Fisher-KPP type nonlinearities, its long-time dynamical behaviour is shown to follow a s