ترغب بنشر مسار تعليمي؟ اضغط هنا

On the continuation of degenerate periodic orbits via normal form: full dimensional resonant tori

434   0   0.0 ( 0 )
 نشر من قبل Marco Sansottera
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reconsider the classical problem of the continuation of degenerate periodic orbits in Hamiltonian systems. In particular we focus on periodic orbits that arise from the breaking of a completely resonant maximal torus. We here propose a suitable normal form construction that allows to identify and approximate the periodic orbits which survive to the breaking of the resonant torus. Our algorithm allows to treat the continuation of approximate orbits which are at leading order degenerate, hence not covered by classical averaging methods. We discuss possible future extensions and applications to localized periodic orbits in chains of weakly coupled oscillators.



قيم البحث

اقرأ أيضاً

We consider the classical problem of the continuation of periodic orbits surviving to the breaking of invariant lower dimensional resonant tori in nearly integrable Hamiltonian systems. In particular we extend our previous results (presented in CNSNS , 61:198-224, 2018) for full dimensional resonant tori to lower dimensional ones. We develop a constructive normal form scheme that allows to identify and approximate the periodic orbits which continue to exist after the breaking of the resonant torus. A specific feature of our algorithm consists in the possibility of dealing with degenerate periodic orbits. Besides, under suitable hypothesis on the spectrum of the approximate periodic orbit, we obtain information on the linear stability of the periodic orbits feasible of continuation. A pedagogical example involving few degrees of freedom, but connected to the classical topic of discrete solitons in dNLS-lattices, is also provided.
We consider the problem of the continuation with respect to a small parameter $epsilon$ of spatially localised and time periodic solutions in 1-dimensional dNLS lattices, where $epsilon$ represents the strength of the interaction among the sites on t he lattice. Specifically, we consider different dNLS models and apply a recently developed normal form algorithm in order to investigate the continuation and the linear stability of degenerate localised periodic orbits on lower and full dimensional invariant resonant tori. We recover results already existing in the literature and provide new insightful ones, both for discrete solitons and for invariant subtori.
172 - Xin Jin , Pengfei Zhang 2021
In this paper we study the Birkhoff Normal Form around elliptic periodic points for a variety of dynamical billiards. We give an explicit construction of the Birkhoff transformation and obtain explicit formulas for the first two twist coefficients in terms of the geometric parameters of the billiard table. As an application, we obtain characterizations of the nonlinear stability and local analytic integrability of the billiards around the elliptic periodic points.
M. Kruskal showed that each nearly-periodic dynamical system admits a formal $U(1)$ symmetry, generated by the so-called roto-rate. We prove that such systems also admit nearly-invariant manifolds of each order, near which rapid oscillations are supp ressed. We study the nonlinear normal stability of these slow manifolds for nearly-periodic Hamiltonian systems on barely symplectic manifolds -- manifolds equipped with closed, non-degenerate $2$-forms that may be degenerate to leading order. In particular, we establish a sufficient condition for long-term normal stability based on second derivatives of the well-known adiabatic invariant. We use these results to investigate the problem of embedding guiding center dynamics of a magnetized charged particle as a slow manifold in a nearly-periodic system. We prove that one previous embedding, and two new embeddings enjoy long-term normal stability, and thereby strengthen the theoretical justification for these models.
The results of an extensive numerical study of the periodic orbits of planar, elliptic restricted three-body planetary systems consisting of a star, an inner massive planet and an outer mass-less body in the external 1:2 mean-motion resonance are pre sented. Using the method of differential continuation, the locations of the resonant periodic orbits of such systems are identified and through an extensive study of their phase-parameter space, it is found that the majority of the resonant periodic orbits are unstable. For certain values of the mass and the orbital eccentricity of the inner planet, however, stable periodic orbits can be found. The applicability of such studies to the 1:2 resonance of the extrasolar planetary system GJ876 is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا