ﻻ يوجد ملخص باللغة العربية
We consider the use of a Kinetic Monte Carlo approach for the description of non-equilibrium bosonic systems, taking non-resonantly excited exciton-polariton condensates and bosonic cascade lasers as examples. In the former case, the considered approach allows the study of the cross-over between incoherent and coherent regimes, which represents the formation of a quasi-condensate that forms purely from the action of energy relaxation processes rather than interactions between the condensing particles themselves. In the latter case, we show that a bosonic cascade can theoretically develop an output coherent state.
The inverse problem for a disordered system involves determining the interparticle interaction parameters consistent with a given set of experimental data. Recently, Rutledge has shown (Phys. Rev. E63, 021111 (2001)) that such problems can be general
In this thesis we present a kinetic Monte Carlo model for the description of epitaxial graphene growth. Experimental results suggest a growth mechanism by which clusters of 5 carbon atoms are an intermediate species necessary for nucleation and islan
A paradigm model of modern atom optics is studied, strongly interacting ultracold bosons in an optical lattice. This many-body system can be artificially opened in a controlled manner by modern experimental techniques. We present results based on a n
A kinetic Monte Carlo approach is applied to studying shape instability of nanowires that results in their breaking up into chains of nanoparticles. Our approach can be used to explore dynamical features of the process that correspond to experimental
We present a new efficient method for Monte Carlo simulations of diffusion-reaction processes. First introduced by us in [Phys. Rev. Lett., 97:230602, 2006], the new algorithm skips the traditional small diffusion hops and propagates the diffusing pa