ترغب بنشر مسار تعليمي؟ اضغط هنا

On the structure of graphs excluding $K_{4}$, $W_{4}$, $K_{2,4}$ and one other graph as a rooted minor

66   0   0.0 ( 0 )
 نشر من قبل Benjamin Moore
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Benjamin Moore




اسأل ChatGPT حول البحث

In this paper we give structural characterizations of graphs not containing rooted $K_{4}$, $W_{4}$, $K_{2,4}$, and a graph we call $L$.



قيم البحث

اقرأ أيضاً

122 - V. Nikiforov 2017
Let $tgeq3$ and $G$ be a graph of order $n,$ with no $K_{2,t}$ minor. If $n>400t^{6}$, then the spectral radius $muleft( Gright) $ satisfies [ muleft( Gright) leqfrac{t-1}{2}+sqrt{n+frac{t^{2}-2t-3}{4}}, ] with equality if and only if $nequiv1$ $(ope ratorname{mod}$ $t)$ and $G=K_{1}veeleftlfloor n/trightrfloor K_{t}$. For $t=3$ the maximum $muleft( Gright) $ is found exactly for any $n>40000$.
103 - V. Nikiforov 2021
Write $rholeft( Gright) $ for the spectral radius of a graph $G$ and $S_{n,r}$ for the join $K_{r}veeoverline{K}_{n-r}.$ Let $n>rgeq2$ and $G$ be a $K_{r+1}$-saturated graph of order $n.$ Recently Kim, Kim, Kostochka, and O determined exactly the minimum value of $rholeft( Gright) $ for $r=2$, and found an asymptotically tight bound on $rholeft( Gright) $ for $rgeq3.$ They also conjectured that [ rholeft( Gright) >rholeft( S_{n,r-1}right) , ] unless $G=S_{n,r-1}.$ In this note their conjecture is proved.
Given graphs $G, H_1, H_2$, we write $G rightarrow ({H}_1, H_2)$ if every ${$red, blue$}$-coloring of the edges of $G$ contains a red copy of $H_1$ or a blue copy of $H_2$. A non-complete graph $G$ is $(H_1, H_2)$-co-critical if $G rightarrow ({H}_1 , H_2)$, but $G+erightarrow ({H}_1, H_2)$ for every edge $e$ in $overline{G}$. Motivated by a conjecture of Hanson and Toft from 1987, we study the minimum number of edges over all $(K_t, K_{1,k})$-co-critical graphs on $n$ vertices. We prove that for all $tge3$ and $kge 3$, there exists a constant $ell(t, k)$ such that, for all $n ge (t-1)k+1$, if $G$ is a $(K_t, K_{1,k})$-co-critical graph on $n$ vertices, then $$ e(G)ge left(2t-4+frac{k-1}{2}right)n-ell(t, k).$$ Furthermore, this linear bound is asymptotically best possible when $tin{3, 4,5}$ and all $kge3$ and $nge (2t-2)k+1$. It seems non-trivial to construct extremal $(K_t, K_{1,k})$-co-critical graphs for $tge6$. We also obtain the sharp bound for the size of $(K_3, K_{1,3})$-co-critical graphs on $nge13$ vertices by showing that all such graphs have at least $3n-4$ edges.
299 - Xiaolan Hu , Xing Peng 2021
For a simple graph $G$, let $chi_f(G)$ be the fractional chromatic number of $G$. In this paper, we aim to establish upper bounds on $chi_f(G)$ for those graphs $G$ with restrictions on the clique number. Namely, we prove that for $Delta geq 4$, if $ G$ has maximum degree at most $Delta$ and is $K_{Delta}$-free, then $chi_f(G) leq Delta-tfrac{1}{8}$ unless $G= C^2_8$ or $G = C_5boxtimes K_2$. This im proves the result in [King, Lu, and Peng, SIAM J. Discrete Math., 26(2) (2012), pp. 452-471] for $Delta geq 4$ and the result in [Katherine and King, SIAM J.Discrete Math., 27(2) (2013), pp. 1184-1208] for $Delta in {6,7,8}$.
The ErdH{o}s-Simonovits stability theorem states that for all epsilon >0 there exists alpha >0 such that if G is a K_{r+1}-free graph on n vertices with e(G) > ex(n,K_{r+1}) - alpha n^2, then one can remove epsilon n^2 edges from G to obtain an r-par tite graph. Furedi gave a short proof that one can choose alpha=epsilon. We give a bound for the relationship of alpha and varepsilon which is asymptotically sharp as epsilon to 0.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا