ﻻ يوجد ملخص باللغة العربية
We introduce a new functional representation of probability density functions (PDFs) of non-negative random variables via a product of a monomial factor and linear combinations of decaying exponentials with complex exponents. This approximate representation of PDFs is obtained for any finite, user-selected accuracy. Using a fast algorithm involving Hankel matrices, we develop a general numerical method for computing the PDF of the sums, products, or quotients of any number of non-negative random variables yielding the result in the same type of functional representation. We present several examples to demonstrate the accuracy of the approach.
We introduce a new approximate multiresolution analysis (MRA) using a single Gaussian as the scaling function, which we call Gaussian MRA (GMRA). As an initial application, we employ this new tool to accurately and efficiently compute the probability
We study fractional smoothness of measures on $mathbb{R}^k$, that are images of a Gaussian measure under mappings from Gaussian Sobolev classes. As a consequence we obtain Nikolskii--Besov fractional regularity of these distributions under some weak nondegeneracy assumption.
It is shown that functions defined on ${0,1,...,r-1}^n$ satisfying certain conditions of bounded differences that guarantee sub-Gaussian tail behavior also satisfy a much stronger ``local sub-Gaussian property. For self-bounding and configuration fun
We study the regularity of densities of distributions that are polynomial images of the standard Gaussian measure on $mathbb{R}^n$. We assume that the degree of a polynomial is fixed and that each variable enters to a power bounded by another fixed number.
We provide a sharp lower bound on the $p$-norm of a sum of independent uniform random variables in terms of its variance when $0 < p < 1$. We address an analogous question for $p$-Renyi entropy for $p$ in the same range.