ﻻ يوجد ملخص باللغة العربية
We introduce a new approximate multiresolution analysis (MRA) using a single Gaussian as the scaling function, which we call Gaussian MRA (GMRA). As an initial application, we employ this new tool to accurately and efficiently compute the probability density function (PDF) of the product of independent random variables. In contrast with Monte-Carlo (MC) type methods (the only other universal approach known to address this problem), our method not only achieves accuracies beyond the reach of MC but also produces a PDF expressed as a Gaussian mixture, thus allowing for further efficient computations. We also show that an exact MRA corresponding to our GMRA can be constructed for a matching user-selected accuracy.
We introduce a new functional representation of probability density functions (PDFs) of non-negative random variables via a product of a monomial factor and linear combinations of decaying exponentials with complex exponents. This approximate represe
We study fractional smoothness of measures on $mathbb{R}^k$, that are images of a Gaussian measure under mappings from Gaussian Sobolev classes. As a consequence we obtain Nikolskii--Besov fractional regularity of these distributions under some weak nondegeneracy assumption.
We study the regularity of densities of distributions that are polynomial images of the standard Gaussian measure on $mathbb{R}^n$. We assume that the degree of a polynomial is fixed and that each variable enters to a power bounded by another fixed number.
Hierarchical and k-medoids clustering are deterministic clustering algorithms based on pairwise distances. Using these same pairwise distances, we propose a novel stochastic clustering method based on random partition distributions. We call our metho
We give a convergence proof for the approximation by sparse collocation of Hilbert-space-valued functions depending on countably many Gaussian random variables. Such functions appear as solutions of elliptic PDEs with lognormal diffusion coefficients