ﻻ يوجد ملخص باللغة العربية
The propagator of two nucleons in infinite nuclear matter is evaluated by a diagonalization of the $pphh$ RPA Hamiltonian. This effective Hamiltonian is non-Hermitian and, for specific density domains and partial waves, yields pairs of complex conjugated eigenvalues representing in-medium bound states of two nucleons. The occurrence of these complex poles in the two-particle Greens function is tightly related to the well known BCS pairing approach. It is demonstrated that these complex eigenvalues and the corresponding bound state wavefunctions contain all information about the BCS gap function. This is illustrated by calculations for $^1S_0$ and $^3PF_2$ pairing gaps in neutron matter which essentially coincide with the corresponding gap functions extracted from conventional solutions of the gap equation. Differences between the bound states in the conventional BCS approach and the $pphh$ RPA are arising in the case of $^3SD_1$ channel in symmetric nuclear matter at low densities. These differences are discussed in the context of transition from BEC for quasi-deuterons to the formation of BCS pairing.
Stimulated by the still puzzling competition between spin-singlet and spin-triplet pairing in nuclei, the 3SD1 neutron-proton pairing is investigated in the framework of BCS theory of nuclear matter. The medium polarization effects are included in th
We discuss the effect of changes in meson properties in a nuclear medium on physical observables, notably, $J/Psi$ dissociation on pion and $rho$ meson comovers in relativistic heavy ion collisions, and the prediction of the $omega$-, $eta$- and $eta$-nuclear bound states.
We study ground and radial excitations of flavor singlet and flavored pseudoscalar mesons within the framework of the rainbow-ladder truncation using an infrared massive and finite interaction in agreement with recent results for the gluon-dressing f
We investigate the single and multiple defects embedded in a superconducting host, studying interplay between the proximity induced pairing and interactions. We explore influence of the spin-orbit coupling on energies, polarization and spatial patter
We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy