ﻻ يوجد ملخص باللغة العربية
We investigate the single and multiple defects embedded in a superconducting host, studying interplay between the proximity induced pairing and interactions. We explore influence of the spin-orbit coupling on energies, polarization and spatial patterns of the bound (Yu-Shiba-Rusinov) states of magnetic impurities in 2-dimensional square lattice. We also address the peculiar bound states in the proximitized Rashba chain, resembling the Majorana quasiparticles, focusing on their magnetic polarization which has been recently reported by S. Jeon et al., [Science 358, 772 (2017)]. Finally, we study leakage of these polarized Majorana quasiparticles on the side-attached nanoscopic regions and confront them with the subgap Kondo effect near to the singlet-doublet phase transition.
We study the influence of the proximity-induced pairing on electronic version of the Dicke effect in a heterostructure, comprising three quantum dots vertically coupled between the metallic and superconducting leads. We discuss a feasible experimenta
We analyze the magnetic and transport properties of a double quantum dot coupled to superconducting leads. In addition to the possible phase transition to a $pi$ state, already present in the single dot case, this system exhibits a richer magnetic be
We consider a three-dimensional topological insulator (TI) wire with a non-uniform chemical potential induced by gating across the cross-section. This inhomogeneity in chemical potential lifts the degeneracy between two one-dimensional surface state
We demonstrate that the selective equal spin Andreev reflection (SESAR) spectroscopy can be used in STM experiments to distinguish the zero-energy Majorana quasiparticles from the ordinary fermionic states of the Rashba chain. Such technique, designe
We study a double-nanowire setup proximity coupled to an $s$-wave superconductor and search for the bulk signatures of the topological phase transition that can be observed experimentally, for example, with an STM tip. Three bulk quantities, namely,