ﻻ يوجد ملخص باللغة العربية
The determination of the electron mass from Penning-trap measurements with $^{12}$C$^{5+}$ ions and from theoretical results for the bound-electron $g$ factor is described in detail. Some recently calculated contributions slightly shift the extracted mass value. Prospects of a further improvement of the electron mass are discussed both from the experimental and from the theoretical point of view. Measurements with $^4$He$^+$ ions will enable a consistency check of the electron mass value, and in future an improvement of the $^4$He nuclear mass and a determination of the fine-structure constant.
We investigate electron-correlation effects in the $g$-factor of the ground state of Li-like ions. Our calculations are performed within the nonrelativistic quantum electrodynamics (NRQED) expansion up to two leading orders in the fine-structure cons
The elastic Rayleigh scattering of twisted light and, in particular, the polarization (transfer) of the scattered photons have been analyzed within the framework of second-order perturbation theory and Diracs relativistic equation. Special attention
The nuclear recoil effect on the $g$ factor of Li-like ions is evaluated. The one-electron recoil contribution is treated within the framework of the rigorous QED approach to first order in the electron-to-nucleus mass ratio $m/M$ and to all orders i
We report calculations of QED corrections to the $g$ factor of Li-like ions induced by the exchange of two virtual photons between the electrons. The calculations are performed within QED theory to all orders in the nuclear binding strength parameter
The paper presents the current status of the theory of bound-electron g factor in highly charged ions. The calculations of the relativistic, QED, nuclear recoil, nuclear structure, and interelectronic-interaction corrections to the g factor are revie