ﻻ يوجد ملخص باللغة العربية
We report calculations of QED corrections to the $g$ factor of Li-like ions induced by the exchange of two virtual photons between the electrons. The calculations are performed within QED theory to all orders in the nuclear binding strength parameter $Zalpha$, where $Z$ is the nuclear charge number and $alpha$ is the fine-structure constant. In the region of low nuclear charges we compare results from three different methods: QED, relativistic many-body perturbation theory, and nonrelativistic QED. All three methods are shown to yield consistent results. With our calculations we improve the accuracy of the theoretical predictions of the $g$ factor of the ground state of Li-like carbon and oxygen by about an order of magnitude. Our theoretical results agree with those from previous calculations but differ by 3-4 standard deviations from the experimental results available for silicon and calcium.
QED corrections to the $g$ factor of Li-like and B-like ions in a wide range of nuclear charges are presented. Many-electron contributions as well as radiative effects on the one-loop level are calculated. Contributions resulting from the interelectr
Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z = 6-92. The configuration-interaction Dirac-Fock method is employed for the evalu
The nuclear recoil effect on the $g$ factor of Li-like ions is evaluated. The one-electron recoil contribution is treated within the framework of the rigorous QED approach to first order in the electron-to-nucleus mass ratio $m/M$ and to all orders i
We report an investigation of the self-energy screening effects for the $g$ factor of the ground state of Li-like ions. The leading screening contribution of the relative order $1/Z$ is calculated to all orders in the binding nuclear strength paramet
We investigate electron-correlation effects in the $g$-factor of the ground state of Li-like ions. Our calculations are performed within the nonrelativistic quantum electrodynamics (NRQED) expansion up to two leading orders in the fine-structure cons