ﻻ يوجد ملخص باللغة العربية
In this paper we demonstrate the necessity of including the generally omitted collective mode contributions in calculations of the Meissner effect for non-uniform superconductors. We consider superconducting pairing with non-zero center of mass momentum, as is relevant to high transition temperature cuprates, cold atoms, and quantum chromodynamic superconductors. For the concrete example of the Fulde-Ferrell phase we present a quantitative calculation of the superfluid density, showing the collective mode contributions are not only appreciable but that they derive from the amplitude mode of the order parameter. This latter mode (related to the Higgs mode in a charged system) is generally viewed as being invisible in conventional superconductors. However, our analysis shows that it is extremely important in pair-density wave type superconductors, where it destroys superfluidity well before the mean-field order parameter vanishes.
We theoretically find that finite size Fulde-Ferrell (FF) superconductor (which is characterized by spatially nonuniform ground state $Psi sim text{exp}(-i{bf q}_{FF}{bf r})$ and $|Psi|(r)=const$ in the bulk case, where $Psi$ is a superconducting ord
The Fulde-Ferrell (FF) superfluid phase, in which fermions form finite-momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is a superconducting state stabilized by a large Zeeman splitting between up- and down-spin electrons in a singlet superconductor. In the absence of disorder, the superconducting order parameter has a
The Higgs mode associated with amplitude fluctuations of the superconducting gap in uniform superconductors usually is heavy, which makes its excitation and detection difficult. We report on the existence of a gapless Higgs mode in the Fulde-Ferrell-
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has received renewed interest recently due to the experimental indication of its presence in CeCoIn$_5$, a quasi 2-dimensional (2D) d-wave superconductor. However direct evidence of the spatial variat