ﻻ يوجد ملخص باللغة العربية
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has received renewed interest recently due to the experimental indication of its presence in CeCoIn$_5$, a quasi 2-dimensional (2D) d-wave superconductor. However direct evidence of the spatial variation of the superconducting order parameter, which is the hallmark of the FFLO state, does not yet exist. In this work we explore the possibility of detecting the phase structure of the order parameter directly using conductance spectroscopy through micro-constrictions, which probes the phase sensitive surface Andreev bound states of d-wave superconductors. We employ the Blonder-Tinkham-Klapwijk formalism to calculate the conductance characteristics between a normal metal (N) and a 2D $s$- or $d_{x^2-y^2}$-wave superconductor in the Fulde-Ferrell state, for all barrier parameter $z$ from the point contact limit ($z=0$) to the tunneling limit ($z gg 1$). We find that the zero-bias conductance peak due to these surface Andreev bound states observed in the uniform d-wave superconductor is split and shifted in the Fulde-Ferrell state. We also clarify what weighted bulk density of states is measured by the conductance in the limit of large $z$.
We develop the Ginzburg-Landau theory of the vortex lattice in clean isotropic three-dimensional superconductors at large Maki parameter, when inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov state is favored. We show that diamagnetic superfluid curren
The Higgs mode associated with amplitude fluctuations of the superconducting gap in uniform superconductors usually is heavy, which makes its excitation and detection difficult. We report on the existence of a gapless Higgs mode in the Fulde-Ferrell-
A Fulde-Ferrell-Larkin-Ovchinnkov (FFLO) state was previously reported in the quasi-2D heavy fermion CeCoIn5 when a magnetic field was applied parallel to the ab-plane. Here, we conduct 115^In NMR studies of this material in a PERPENDICULAR field, an
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is a superconducting state stabilized by a large Zeeman splitting between up- and down-spin electrons in a singlet superconductor. In the absence of disorder, the superconducting order parameter has a
We show that in the presence of magnetic field, two superconducting phases with the center-of-mass momentum of Cooper pair parallel to the magnetic field are induced in spin-orbit-coupled superconductor Li$_2$Pd$_3$B. Specifically, at small magnetic