ﻻ يوجد ملخص باللغة العربية
We propose a one-shot mechanism for high-energy cosmic ray generation by a neutron star falling into a black hole surrounded by low density plasma. The function of the black hole in this scenario is to accelerate the star to a speed arbitrarily close to that of light. When the star - essentially, a magnetized sphere - approaches the horizon it imparts energy to the ambient plasma charges via the induced electric field. Disregarding radiation losses, for iron nucleus, a simple estimate gives energies on the order of 10^19 eV for stars with magnetic fields as weak as 10^6 teslas. The proposed mechanism should also work in chance encounters between rapidly moving neutron stars and molecular clouds. The rarity of such encounters may explain the apparent randomness and rarity of the high-energy cosmic ray events.
The LIGO/Virgo Consortium (LVC) released a preliminary announcement of a candidate gravitational wave signal, S190426c, that could have arisen from a black hole-neutron star merger. As the first such candidate system, its properties such as masses an
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes.
The origin of the heavy elements in the Universe is not fully determined. Neutron star-black hole (NSBH) and neutron star-neutron star mergers may both produce heavy elements via rapid neutron-capture process (r-process). We use the recent detection
Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactiv
We propose an analogy between the quantum physics of a black hole in its late stages of the evaporation process and a superfluid Bose Einstein Condensate (BEC), based on the Horowitz and Maldacena quantum final state projection model [JHEP 2004(02),