ﻻ يوجد ملخص باللغة العربية
The origin of the heavy elements in the Universe is not fully determined. Neutron star-black hole (NSBH) and neutron star-neutron star mergers may both produce heavy elements via rapid neutron-capture process (r-process). We use the recent detection of gravitational waves from NSBHs, improved measurements of neutron star equation-of-state, and the most modern numerical simulations of the ejected materials from binary collisions to investigate the production of heavy elements from binary mergers. As the amount of ejecta depends on the mass and spin distribution of compact objects, as well as on the equation-of-state of neutron stars, we consider various models for these quantities, informed by gravitational-wave and pulsar data. We find that even in the most favorable model, neutron star-black hole mergers are unlikely to account for more than 77% of the r-process elements in the local Universe. If black holes have preferentially small spins, this bound decreases to 35%. Finally, if black hole spins are small and there is a dearth of low mass ($<5M_{odot}$) black holes in NSBH binaries, the NSBH contribution to r-process elements is negligible.
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes.
Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactiv
LIGO and Virgos third observing run (O3) revealed the first neutron star-black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements creating optical/near-IR kilonova (KN) emission. The join
The detection of GW170817 and the identification of its host galaxy have allowed for the first standard-siren measurement of the Hubble constant, with an uncertainty of $sim 14%$. As more detections of binary neutron stars with redshift measurement a
In this work we study the formation of the first two black hole-neutron star (BHNS) mergers detected in gravitational waves (GW200115 and GW200105) from massive stars in wide isolated binary systems - the isolated binary evolution channel. We use 560