ﻻ يوجد ملخص باللغة العربية
The theory of graph limits represents large graphs by analytic objects called graphons. Graph limits determined by finitely many graph densities, which are represented by finitely forcible graphons, arise in various scenarios, particularly within extremal combinatorics. Lovasz and Szegedy conjectured that all such graphons possess a simple structure, e.g., the space of their typical vertices is always finite dimensional; this was disproved by several ad hoc constructions of complex finitely forcible graphons. We prove that any graphon is a subgraphon of a finitely forcible graphon. This dismisses any hope for a result showing that finitely forcible graphons possess a simple structure, and is surprising when contrasted with the fact that finitely forcible graphons form a meager set in the space of all graphons. In addition, since any finitely forcible graphon represents the unique minimizer of some linear combination of densities of subgraphs, our result also shows that such minimization problems, which conceptually are among the simplest kind within extremal graph theory, may in fact have unique optimal solutions with arbitrarily complex structure.
Graphons are analytic objects representing limits of convergent sequences of graphs. Lovasz and Szegedy conjectured that every finitely forcible graphon, i.e. any graphon determined by finitely many graph densities, has a simple structure. In particu
In this note, we show how to obtain a characteristic power series of graphons -- infinite limits of dense graphs -- as the limit of normalized reciprocal characteristic polynomials. This leads to a new characterization of graph quasi-randomness and a
A connected digraph in which the in-degree of any vertex equals its out-degree is Eulerian; this baseline result is used as the basis of existence proofs for universal cycles (also known as ucycles or generalized deBruijn cycles or U-cycles) of sever
A subbundle of variable dimension inside the tangent bundle of a smooth manifold is called a smooth distribution if it is the pointwise span of a family of smooth vector fields. We prove that all such distributions are finitely generated, meaning tha
It is proved that any vertex operator algebra for which the image of the Virasoro element in Zhus algebra is algebraic over complex numbers is finitely generated. In particular, any vertex operator algebra with a finite dimensional Zhus algebra is fi