ﻻ يوجد ملخص باللغة العربية
Graphons are analytic objects representing limits of convergent sequences of graphs. Lovasz and Szegedy conjectured that every finitely forcible graphon, i.e. any graphon determined by finitely many graph densities, has a simple structure. In particular, one of their conjectures would imply that every finitely forcible graphon has a weak $varepsilon$-regular partition with the number of parts bounded by a polynomial in $varepsilon^{-1}$. We construct a finitely forcible graphon $W$ such that the number of parts in any weak $varepsilon$-regular partition of $W$ is at least exponential in $varepsilon^{-2}/2^{5log^*varepsilon^{-2}}$. This bound almost matches the known upper bound for graphs and, in a certain sense, is the best possible for graphons.
The theory of graph limits represents large graphs by analytic objects called graphons. Graph limits determined by finitely many graph densities, which are represented by finitely forcible graphons, arise in various scenarios, particularly within ext
In this note, we show how to obtain a characteristic power series of graphons -- infinite limits of dense graphs -- as the limit of normalized reciprocal characteristic polynomials. This leads to a new characterization of graph quasi-randomness and a
This book is based on Graph Theory courses taught by P.A. Petrosyan, V.V. Mkrtchyan and R.R. Kamalian at Yerevan State University.
This paper provides a survey of methods, results, and open problems on graph and hypergraph colourings, with a particular emphasis on semi-random `nibble methods. We also give a detailed sketch of some aspects of the recent proof of the ErdH{o}s-Faber-Lov{a}sz conjecture.
Satisfiability of boolean formulae (SAT) has been a topic of research in logic and computer science for a long time. In this paper we are interested in understanding the structure of satisfiable and unsatisfiable sentences. In previous work we initia