ترغب بنشر مسار تعليمي؟ اضغط هنا

Chase-and-run dynamics in cell motility and the molecular rupture of interacting active elastic dimers

83   0   0.0 ( 0 )
 نشر من قبل Moumita Das
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cell migration in morphogenesis and cancer metastasis typically involves interplay between different cell types. We construct and study a minimal, one-dimensional model comprised of two different motile cells with each cell represented as an active elastic dimer. The interaction between the two cells via cadherins is modeled as a spring that can rupture beyond a threshold force as it undergoes dynamic loading via the attached motile cells. We obtain a phase diagram consisting of chase-and-run dynamics and clumping dynamics as a function of the stiffness of the interaction spring and the threshold force. We also find that while feedback between cadherins and cell-substrate interaction via integrins accentuates the chase-run behavior, feedback is not necessary for it.



قيم البحث

اقرأ أيضاً

A quantitative description of the flagellar dynamics in the procyclic T. brucei is presented in terms of stationary oscillations and traveling waves. By using digital video microscopy to quantify the kinematics of trypanosome flagellar waveforms. A t heoretical model is build starting from a Bernoulli-Euler flexural-torsional model of an elastic string with internal distribution of force and torque. The dynamics is internally driven by the action of the molecular motors along the string, which is proportional to the local shift and consequently to the local curvature. The model equation is a nonlinear partial differential wave equation of order four, containing nonlinear terms specific to the Korteweg-de Vries (KdV) equation and the modified-KdV equation. For different ranges of parameters we obtained kink-like solitons, breather solitons, and a new class of solutions constructed by smoothly piece-wise connected conic functions arcs (e.g. ellipse). The predicted amplitude and wavelengths are in good match with experiments. We also present the hypotheses for a step-wise kinematical model of swimming of procyclic African trypanosome.
Bacteria such as Escherichia coli move about in a series of runs and tumbles: while a run state (straight motion) entails all the flagellar motors spinning in counterclockwise mode, a tumble is caused by a shift in the state of one or more motors to clockwise spinning mode. In the presence of an attractant gradient in the environment, runs in the favourable direction are extended, and this results in a net drift of the organism in the direction of the gradient. The underlying signal transduction mechanism produces directed motion through a bi-lobed response function which relates the clockwise bias of the flagellar motor to temporal changes in the attractant concentration. The two lobes (positive and negative) of the response function are separated by a time interval of $sim 1$s, such that the bacterium effectively compares the concentration at two different positions in space and responds accordingly. We present here a novel path-integral method which allows us to address this problem in the most general way possible, including multi-step CW-CCW transitions, directional persistence and power-law waiting time distributions. The method allows us to calculate quantities such as the effective diffusion coefficient and drift velocity, in a power series expansion in the attractant gradient. Explicit results in the lowest order in the expansion are presented for specific models, which, wherever applicable, agree with the known results. New results for gamma-distributed run interval distributions are also presented.
It is known that mechanical interactions couple a cell to its neighbors, enabling a feedback loop to regulate tissue growth. However, the interplay between cell-cell adhesion strength, local cell density and force fluctuations in regulating cell prol iferation is poorly understood. Here, we show that spatial variations in the tumor growth rates, which depend on the location of cells within tissue spheroids, are strongly influenced by cell-cell adhesion. As the strength of the cell-cell adhesion increases, intercellular pressure initially decreases, enabling dormant cells to more readily enter into a proliferative state. We identify an optimal cell-cell adhesion regime where pressure on a cell is a minimum, allowing for maximum proliferation. We use a theoretical model to validate this novel collective feedback mechanism coupling adhesion strength, local stress fluctuations and proliferation.Our results, predicting the existence of a non-monotonic proliferation behavior as a function of adhesion strength, are consistent with experimental results. Several experimental implications of the proposed role of cell-cell adhesion in proliferation are quantified, making our model predictions amenable to further experimental scrutiny. We show that the mechanism of contact inhibition of proliferation, based on a pressure-adhesion feedback loop, serves as a unifying mechanism to understand the role of cell-cell adhesion in proliferation.
432 - J. H. Lopez , Moumita Das , 2014
Experiments suggest that the migration of some cells in the three-dimensional extra cellular matrix bears strong resemblance to one-dimensional cell migration. Motivated by this observation, we construct and study a minimal one-dimensional model cell made of two beads and an active spring moving along a rigid track. The active spring models the stress fibers with their myosin-driven contractility and alpha-actinin-driven extendability, while the friction coefficients of the two beads describe the catch/slip bond behavior of the integrins in focal adhesions. In the absence of active noise, net motion arises from an interplay between active contractility (and passive extendability) of the stress fibers and an asymmetry between the front and back of the cell due to catch bond behavior of integrins at the front of the cell and slip bond behavior of integrins at the back. We obtain reasonable cell speeds with independently estimated parameters. We also study the effects of hysteresis in the active spring, due to catch bond behavior and the dynamics of cross-linking, and the addition of active noise on the motion of the cell. Our model highlights the role of alpha-actinin in three-dimensional cell motility and does not require Arp2/3 actin filament nucleation for net motion.
Utilising Onsagers variational formulation, we derive dynamical equations for the relaxation of a fluid membrane tube in the limit of small deformation, allowing for a contrast of solvent viscosity across the membrane and variations in surface tensio n due to membrane incompressibility. We compute the relaxation rates, recovering known results in the case of purely axis-symmetric perturbations and making new predictions for higher order (azimuthal) $m$-modes. We analyse the long and short wavelength limits of these modes by making use of various asymptotic arguments. We incorporate stochastic terms to our dynamical equations suitable to describe both passive thermal forces and non-equilibrium active forces. We derive expressions for the fluctuation amplitudes, an effective temperature associated with active fluctuations, and the power spectral density for both the thermal and active fluctuations. We discuss an experimental assay that might enable measurement of these fluctuations to infer the properties of the active noise. Finally we discuss our results in the context of active membranes more generally and give an overview of some open questions in the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا