ترغب بنشر مسار تعليمي؟ اضغط هنا

Causal structures and the classification of higher order quantum computations

282   0   0.0 ( 0 )
 نشر من قبل Paolo Perinotti Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paolo Perinotti




اسأل ChatGPT حول البحث

Quantum operations are the most widely used tool in the theory of quantum information processing, representing elementary transformations of quantum states that are composed to form complex quantum circuits. The class of quantum transformations can be extended by including transformations on quantum operations, and transformations thereof, and so on up to the construction of a potentially infinite hierarchy of transformations. In the last decade, a sub-hierarchy, known as quantum combs, was exhaustively studied, and characterised as the most general class of transformations that can be achieved by quantum circuits with open slots hosting variable input elements, to form a complete output quantum circuit. The theory of quantum combs proved to be successful for the optimisation of information processing tasks otherwise untreatable. In more recent years the study of maps from combs to combs has increased, thanks to interesting examples showing how this next order of maps requires entanglement of the causal order of operations with the state of a control quantum system, or, even more radically, superpositions of alternate causal orderings. Some of these non-circuital transformations are known to be achievable and have even been achieved experimentally, and were proved to provide some computational advantage in various information-processing tasks with respect to quantum combs. Here we provide a formal language to form all possible types of transformations, and use it to prove general structure theorems for transformations in the hierarchy. We then provide a mathematical characterisation of the set of maps from combs to combs, hinting at a route for the complete characterisation of maps in the hierarchy. The classification is strictly related to the way in which the maps manipulate the causal structure of input circuits.



قيم البحث

اقرأ أيضاً

The constraints arising for a general set of causal relations, both classically and quantumly, are still poorly understood. As a step in exploring this question, we consider a coherently controlled superposition of direct-cause and common-cause relat ionships between two events. We propose an implementation involving the spatial superposition of a mass and general relativistic time dilation. Finally, we develop a computationally efficient method to distinguish such genuinely quantum causal structures from classical (incoherent) mixtures of causal structures and show how to design experimental verifications of the nonclassicality of a causal structure.
For minimum-error channel discrimination tasks that involve only unitary channels, we show that sequential strategies may outperform parallel ones. Additionally, we show that general strategies that involve indefinite causal order are also advantageo us for this task. However, for the task of discriminating a uniformly distributed set of unitary channels that forms a group, we show that parallel strategies are indeed optimal, even when compared to general strategies. We also show that strategies based on the quantum switch cannot outperform sequential strategies in the discrimination of unitary channels. Finally, we derive an ultimate upper bound for the maximal probability of successfully discriminating any set of unitary channels with any number of copies, for the most general strategies that are suitable for channel discrimination. Our bound is tight since it is saturated by sets of unitary channels forming a group k-design.
Quantum supermaps are transformations that map quantum operations to quantum operations. It is known that quantum supermaps which respect a definite, predefined causal order between their input operations correspond to fixed-order quantum circuits. A systematic understanding of the physical interpretation of more general types of quantum supermaps--in particular, those incompatible with a definite causal structure--is however lacking. Here we identify two new types of circuits that naturally generalise the fixed-order case and that likewise correspond to distinct classes of quantum supermaps, which we fully characterise. We first introduce quantum circuits with classical control of causal order, in which the order of operations is still well-defined, but not necessarily fixed in advance: it can in particular be established dynamically, in a classically-controlled manner, as the circuit is being used. We then consider quantum circuits with quantum control of causal order, in which the order of operations is controlled coherently. The supermaps described by these classes of circuits are physically realisable, and the latter encompasses all known examples of physically realisable processes with indefinite causal order, including the celebrated quantum switch. Interestingly, it also contains new examples arising from the combination of dynamical and coherent control of causal order, and we detail explicitly one such process. Nevertheless, we show that quantum circuits with quantum control of causal order can only generate causal correlations, compatible with a well-defined causal order. We furthermore extend our considerations to probabilistic circuits that produce also classical outcomes, and we demonstrate by an example how our characterisations allow us to identify new advantages for quantum information processing tasks that could be demonstrated in practice.
In quantum mechanics events can happen in no definite causal order: in practice this can be verified by measuring a causal witness, in the same way that an entanglement witness verifies entanglement. Indefinite causal order can be observed in a quant um switch, where two operations act in a quantum superposition of the two possible orders. Here we realise a photonic quantum switch, where polarisation coherently controls the order of two operations, $hat{A}$ and $hat{B}$, on the transverse spatial mode of the photons. Our setup avoids the limitations of earlier implementations: the operations cannot be distinguished by spatial or temporal position. We show that our quantum switch has no definite causal order, by constructing a causal witness and measuring its value to be 18 standard deviations beyond the definite-order bound.
In this Chapter, we discuss the effects of higher-order structures on SIS-like processes of social contagion. After a brief motivational introduction where we illustrate the standard SIS process on networks and the difference between simple and compl ex contagions, we introduce spreading processes on higher-order structures starting from the most general formulation on hypergraphs and then moving to several mean-field and heterogeneous mean-field approaches. The results highlight the rich phenomenology brought by taking into account higher-order contagion effects: both continuous and discontinuous transitions are observed, and critical mass effects emerge. We conclude with a short discussion on the theoretical results regarding the nature of the epidemic transition and the general need for data to validate these models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا