ﻻ يوجد ملخص باللغة العربية
Quantum operations are the most widely used tool in the theory of quantum information processing, representing elementary transformations of quantum states that are composed to form complex quantum circuits. The class of quantum transformations can be extended by including transformations on quantum operations, and transformations thereof, and so on up to the construction of a potentially infinite hierarchy of transformations. In the last decade, a sub-hierarchy, known as quantum combs, was exhaustively studied, and characterised as the most general class of transformations that can be achieved by quantum circuits with open slots hosting variable input elements, to form a complete output quantum circuit. The theory of quantum combs proved to be successful for the optimisation of information processing tasks otherwise untreatable. In more recent years the study of maps from combs to combs has increased, thanks to interesting examples showing how this next order of maps requires entanglement of the causal order of operations with the state of a control quantum system, or, even more radically, superpositions of alternate causal orderings. Some of these non-circuital transformations are known to be achievable and have even been achieved experimentally, and were proved to provide some computational advantage in various information-processing tasks with respect to quantum combs. Here we provide a formal language to form all possible types of transformations, and use it to prove general structure theorems for transformations in the hierarchy. We then provide a mathematical characterisation of the set of maps from combs to combs, hinting at a route for the complete characterisation of maps in the hierarchy. The classification is strictly related to the way in which the maps manipulate the causal structure of input circuits.
The constraints arising for a general set of causal relations, both classically and quantumly, are still poorly understood. As a step in exploring this question, we consider a coherently controlled superposition of direct-cause and common-cause relat
For minimum-error channel discrimination tasks that involve only unitary channels, we show that sequential strategies may outperform parallel ones. Additionally, we show that general strategies that involve indefinite causal order are also advantageo
Quantum supermaps are transformations that map quantum operations to quantum operations. It is known that quantum supermaps which respect a definite, predefined causal order between their input operations correspond to fixed-order quantum circuits. A
In quantum mechanics events can happen in no definite causal order: in practice this can be verified by measuring a causal witness, in the same way that an entanglement witness verifies entanglement. Indefinite causal order can be observed in a quant
In this Chapter, we discuss the effects of higher-order structures on SIS-like processes of social contagion. After a brief motivational introduction where we illustrate the standard SIS process on networks and the difference between simple and compl