ترغب بنشر مسار تعليمي؟ اضغط هنا

Unitary channel discrimination beyond group structures: Advantages of sequential and indefinite-causal-order strategies

74   0   0.0 ( 0 )
 نشر من قبل Marco T\\'ulio Quintino
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For minimum-error channel discrimination tasks that involve only unitary channels, we show that sequential strategies may outperform parallel ones. Additionally, we show that general strategies that involve indefinite causal order are also advantageous for this task. However, for the task of discriminating a uniformly distributed set of unitary channels that forms a group, we show that parallel strategies are indeed optimal, even when compared to general strategies. We also show that strategies based on the quantum switch cannot outperform sequential strategies in the discrimination of unitary channels. Finally, we derive an ultimate upper bound for the maximal probability of successfully discriminating any set of unitary channels with any number of copies, for the most general strategies that are suitable for channel discrimination. Our bound is tight since it is saturated by sets of unitary channels forming a group k-design.



قيم البحث

اقرأ أيضاً

We present an instance of a task of mininum-error discrimination of two qubit-qubit quantum channels for which a sequential strategy outperforms any parallel strategy. We then establish two new classes of strategies for channel discrimination that in volve indefinite causal order and show that there exists a strict hierarchy among the performance of all four strategies. Our proof technique employs a general method of computer-assisted proofs. We also provide a systematic method for finding pairs of channels that showcase this phenomenon, demonstrating that the hierarchy between the strategies is not exclusive to our main example.
Investigating the role of causal order in quantum mechanics has recently revealed that the causal distribution of events may not be a-priori well-defined in quantum theory. While this has triggered a growing interest on the theoretical side, creating processes without a causal order is an experimental task. Here we report the first decisive demonstration of a process with an indefinite causal order. To do this, we quantify how incompatible our set-up is with a definite causal order by measuring a causal witness. This mathematical object incorporates a series of measurements which are designed to yield a certain outcome only if the process under examination is not consistent with any well-defined causal order. In our experiment we perform a measurement in a superposition of causal orders - without destroying the coherence - to acquire information both inside and outside of a causally non-ordered process. Using this information, we experimentally determine a causal witness, demonstrating by almost seven standard deviations that the experimentally implemented process does not have a definite causal order.
One of the most fundamental open problems in physics is the unification of general relativity and quantum theory to a theory of quantum gravity. An aspect that might become relevant in such a theory is that the dynamical nature of causal structure pr esent in general relativity displays quantum uncertainty. This may lead to a phenomenon known as indefinite or quantum causal structure, as captured by the process matrix framework. Due to the generality of that framework, however, for many process matrices there is no clear physical interpretation. A popular approach towards a quantum theory of gravity is the Page-Wootters formalism, which associates to time a Hilbert space structure similar to spatial position. By explicitly introducing a quantum clock, it allows to describe time-evolution of systems via correlations between this clock and said systems encoded in history states. In this paper we combine the process matrix framework with a generalization of the Page-Wootters formalism in which one considers several observers, each with their own discrete quantum clock. We describe how to extract process matrices from scenarios involving such observers with quantum clocks, and analyze their properties. The description via a history state with multiple clocks imposes constraints on the physical implementation of process matrices and on the perspectives of the observers as described via causal reference frames. While it allows for describing scenarios where different definite causal orders are coherently controlled, we explain why certain non-causal processes might not be implementable within this setting.
Realization of indefinite causal order (ICO), a theoretical possibility that even causal relations between physical events can be subjected to quantum superposition, apart from its general significance for the fundamental physics research, would also enable quantum information processing that outperforms protocols in which the underlying causal structure is definite. In this paper, we start with a proposition that an observer in a state of quantum superposition of being at two different relative distances from the event horizon of a black hole, effectively resides in ICO space-time generated by the black hole. By invoking the fact that the near-horizon geometry of a Schwarzschild black hole is that of a Rindler space-time, we propose a way to simulate an observer in ICO space-time by a Rindler observer in a state of superposition of having two different proper accelerations. By extension, a pair of Rindler observers with entangled proper accelerations simulates a pair of entangled ICO observers. Moreover, these Rindler-systems might have a plausible experimental realization by means of optomechanical resonators.
In quantum mechanics events can happen in no definite causal order: in practice this can be verified by measuring a causal witness, in the same way that an entanglement witness verifies entanglement. Indefinite causal order can be observed in a quant um switch, where two operations act in a quantum superposition of the two possible orders. Here we realise a photonic quantum switch, where polarisation coherently controls the order of two operations, $hat{A}$ and $hat{B}$, on the transverse spatial mode of the photons. Our setup avoids the limitations of earlier implementations: the operations cannot be distinguished by spatial or temporal position. We show that our quantum switch has no definite causal order, by constructing a causal witness and measuring its value to be 18 standard deviations beyond the definite-order bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا