ﻻ يوجد ملخص باللغة العربية
Superconductivity develops in bulk doped SrTiO$_3$ and at the LaAlO$_3$/SrTiO$_3$ interface with a dome-shaped density dependence of the critical temperature $T_c$, despite different dimensionalities and geometries. We propose that the $T_c$ dome of LaAlO$_3$/SrTiO$_3$ is a shape resonance due to quantum confinement of superconducting bulk SrTiO$_3$. We substantiate this interpretation by comparing the exact solutions of a three-dimensional and quasi-two-dimensional two-band BCS gap equation. This comparison highlights the role of heavy bands for $T_c$ in both geometries. For bulk SrTiO$_3$, we extract the density dependence of the pairing interaction from the fit to experimental data. We apply quantum confinement in a square potential well of finite depth and calculate $T_c$ in the confined configuration. We compare the calculated $T_c$ to transport experiments and provide an explanation as to why the optimal $T_c$s are so close to each other in two-dimensional interfaces and the three-dimensional bulk material.
We describe the transport properties of mesoscopic devices based on the two dimensional electron gas (2DEG) present at the LaAlO$_3$/SrTiO$_3$ interface. Bridges with lateral dimensions down to 500~nm were realized using electron beam lithography. Th
Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3
We measure the gate voltage ($V_g$) dependence of the superconducting properties and the spin-orbit interaction in the (111)-oriented LaAlO$_3$/SrTiO$_3$ interface. Superconductivity is observed in a dome-shaped region in the carrier density-temperat
The paradigm of electrons interacting with a periodic lattice potential is central to solid-state physics. Semiconductor heterostructures and ultracold neutral atomic lattices capture many of the essential properties of 1D electronic systems. However
The conducting gas that forms at the interface between LaAlO$_3$ and SrTiO$_3$ has proven to be a fertile playground for a wide variety of physical phenomena. The bulk of previous research has focused on the (001) and (110) crystal orientations. Here