ﻻ يوجد ملخص باللغة العربية
We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps $d$ and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction--radiation in this geometry. We find that these effects can be prominent in typical materials (e.g. silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.
We present a general nonequilibrium Greens function formalism for modeling heat transfer in systems characterized by linear response that establishes the formal algebraic relationships between phonon and radiative conduction, and reveals how upper bo
When two objects made of a material which supports surface modes are brought in close proximity to each other such that the vacuum gap between them is less than the thermal wavelength of radiation, then the coupling between the surface modes provides
In this work, we study the near-field heat transfer between composite nanostructures. It is demonstrated that thermally excited surface plasmon polaritons, surface phonon polaritons, and hyperbolic phonon polaritons in such composite nanostructures s
Near-field radiative heat transfer (NFRHT) is strongly related with many applications such as near-field imaging, thermos-photovoltaics and thermal circuit devices. The active control of NFRHT is of great interest since it provides a degree of tunabi
In this Rapid Communication, we theoretically demonstrate that near-field radiative heat transfer (NFRHT) can be modulated and enhanced by a new energy transmission mode of evanescent wave, i.e. the nonreciprocal surface plasmons polaritons (NSPPs).