ﻻ يوجد ملخص باللغة العربية
When two objects made of a material which supports surface modes are brought in close proximity to each other such that the vacuum gap between them is less than the thermal wavelength of radiation, then the coupling between the surface modes provides an important channel for the heat transfer to occur which is different from that mediated by long range propagating electromagnetic waves. Indeed, the heat transfer then exceeds Plancks blackbody limit by several orders of magnitude, and consequently has been used for several energy applications such as near-field thermophotovoltaic systems. This near-field radiative heat exchange has been traditionally and successfully described using fluctuational electrodynamics principles. Here, we describe an alternate coupled harmonic oscillator model approach which can be used to model the coupling between surface modes and hence the resultant near-field heat transfer. We apply this theory to estimate the near-field heat transfer for the configurations of two metallic nanoparticles and two planar metal surfaces and compare the result with predictions from fluctuational electrodynamics theory.
We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on
The dynamic heat transfer between two half-spaces separated by a vacuum gap due to coupling of their surface modes is modelled using the theory that describes the dynamic energy transfer between two coupled harmonic oscillators each separately connec
Extreme near-field heat transfer between metallic surfaces is a subject of debate as the state-of-the-art theory and experiments are in disagreement on the energy carriers driving heat transport. In an effort to elucidate the physics of extreme near-
We show that periodic multilayered structures allow to drastically enhance near-field radiative heat transfer between nanoparticles. In particular, when the two nanoparticles are placed on each side of the multilayered structure, at the same interpar
Metasurfaces, the two-dimensional (2D) counterpart of metamaterials, have recently attracted a great attention due to their amazing properties such as negative refraction, hyperbolic dispersion, manipulation of the evanescent spectrum. In this work,