ترغب بنشر مسار تعليمي؟ اضغط هنا

On triviality of S-matrix in conformal higher spin theory

165   0   0.0 ( 0 )
 نشر من قبل Arkady Tseytlin
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the conformal higher spin (CHS) theory in d=4 that contains the s=1 Maxwell vector, s=2 Weyl graviton and their higher spin s=3,4,... counterparts with higher-derivative box^s kinetic terms. The interacting action for such theory can be found as the coefficient of the logarithmically divergent part in the induced action for sources coupled to higher spin currents in a free complex scalar field model. We explicitly determine some cubic and quartic interaction vertices in the CHS action from scalar loop integrals. We then compute the simplest tree-level 4-particle scattering amplitudes 11 -> 11, 22 -> 22 and 11 -> 22 and find that after summing up all the intermediate CHS exchanges they vanish. This generalises the vanishing of the scattering amplitude for external conformal scalars interacting via the exchange of all CHS fields found earlier in arXiv:1512.08896. This vanishing should generalise to all scattering amplitudes in the CHS theory and as in the conformal scalar scattering case should be a consequence of the underlying infinite dimensional higher spin symmetry that extends the standard conformal symmetry.



قيم البحث

اقرأ أيضاً

187 - D.V. Uvarov 2014
It is shown that similarly to massless superparticle, classical global symmetry of the Berkovits twistor string action is infinite-dimensional. We identify its superalgebra, whose finite-dimensional subalgebra contains $psl(4|4,mathbb R)$ superalgebr a. In quantum theory this infinite-dimensional symmetry breaks down to $SL(4|4,mathbb R)$ one.
The S-matrix for each chiral sector of Liouville theory on a cylinder is computed from the loop expansion of correlation functions of a one-dimensional field theory on a circle with a non-local kinetic energy and an exponential potential. This action is the Legendre transform of the generating function of semiclassical scattering amplitudes. It is derived from the relation between asymptotic in- and out-fields. Its relevance for the quantum scattering process is demonstrated by comparing explicit loop diagrams computed from this action with other methods of computing the S-matrix, which are also developed.
We study conformal higher spin (CHS) fields on constant curvature backgrounds. By employing parent formulation technique in combination with tractor description of GJMS operators we find a manifestly factorized form of the CHS wave operators for symm etric fields of arbitrary integer spin $s$ and gauge invariance of arbitrary order $tleq s$. In the case of the usual Fradkin-Tseytlin fields $t=1$ this gives a systematic derivation of the factorization formulas known in the literature while for $t>1$ the explicit formulas were not known. We also relate the gauge invariance of the CHS fields to the partially-fixed gauge invariance of the factors and show that the factors can be identified with (partially gauge-fixed) wave operators for (partially)-massless or special massive fields. As a byproduct, we establish a detailed relationship with the tractor approach and, in particular, derive the tractor form of the CHS equations and gauge symmetries.
We investigate the relation between the $S$-matrix unitarity ($SS^{dagger}=1$) and the renormalizability, in theories with negative norm states. The relation has been confirmed in many theories, such as gauge theories, Einstein gravity and Lifshitz-t ype non-relativistic theories by analyzing the unitarity bound, which follows from the $S$-matrix unitarity and the norm positivity. On the other hand, renormalizable theories with a higher derivative kinetic term do not necessarily satisfy the unitarity bound essentially because the unitarity bound does not hold due to the negative norm states. In these theories, it is not clear if the $S$-matrix unitarity provides a nontrivial constraint related to the renormalizability. In this paper we introduce scalar field models with a higher derivative kinetic term and analyze the $S$-matrix unitarity. We have positive results of the relation.
We develop a general formalism of duality rotations for bosonic conformal spin-$s$ gauge fields, with $sgeq 2$, in a conformally flat four-dimensional spacetime. In the $s=1$ case this formalism is equivalent to the theory of $mathsf{U}(1)$ duality-i nvariant nonlinear electrodynamics developed by Gaillard and Zumino, Gibbons and Rasheed, and generalised by Ivanov and Zupnik. For each integer spin $sgeq 2$ we demonstrate the existence of families of conformal $mathsf{U}(1)$ duality-invariant models, including a generalisation of the so called ModMax Electrodynamics ($s=1$). Our bosonic results are then extended to the $mathcal{N}=1$ and $mathcal{N}=2$ supersymmetric cases. We also sketch a formalism of duality rotations for conformal gauge fields of Lorentz type $(m/2, n/2)$, for positive integers $m $ and $n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا