ﻻ يوجد ملخص باللغة العربية
The S-matrix for each chiral sector of Liouville theory on a cylinder is computed from the loop expansion of correlation functions of a one-dimensional field theory on a circle with a non-local kinetic energy and an exponential potential. This action is the Legendre transform of the generating function of semiclassical scattering amplitudes. It is derived from the relation between asymptotic in- and out-fields. Its relevance for the quantum scattering process is demonstrated by comparing explicit loop diagrams computed from this action with other methods of computing the S-matrix, which are also developed.
We consider the conformal higher spin (CHS) theory in d=4 that contains the s=1 Maxwell vector, s=2 Weyl graviton and their higher spin s=3,4,... counterparts with higher-derivative box^s kinetic terms. The interacting action for such theory can be f
Using duality in optimization theory we formulate a dual approach to the S-matrix bootstrap that provides rigorous bounds to 2D QFT observables as a consequence of unitarity, crossing symmetry and analyticity of the scattering matrix. We then explain
We investigate the structure of the quantum S-matrix for perturbative excitations of the Pohlmeyer reduced version of the AdS_5 x S^5 superstring following arXiv:0912.2958. The reduced theory is a fermionic extension of a gauged WZW model with an int
We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schr{o}dinger model, that
Similarly to the bosonic Liouville theory, the $mathcal{N}=2$ supersymmetric Liouville theory was conjectured to be equipped with the duality that exchanges the superpotential and the Kahler potential. The conjectured duality, however, seems to suffe