ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Percolation Approach to 3D Modeling of Tissue Aging

79   0   0.0 ( 0 )
 نشر من قبل Vladimir Privman
 تاريخ النشر 2016
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissues connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cells infinite cluster still exits.



قيم البحث

اقرأ أيضاً

We describe a percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Tissues are considered as structures made of regular healthy, senescent, dead ( apoptotic) cells, and studied dynamically, with the ongoing processes including regular cell division to fill vacant sites left by dead cells, healthy cells becoming senescent or dying, and other processes. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. An illustrative application of the developed theoretical modeling approach is reported, confirming recent experimental findings that inhibition of senescence can lead to extended lifespan.
We review the field theory approach to percolation processes. Specifically, we focus on the so-called simple and general epidemic processes that display continuous non-equilibrium active to absorbing state phase transitions whose asymptotic features are governed respectively by the directed (DP) and dynamic isotropic percolation (dIP) universality classes. We discuss the construction of a field theory representation for these Markovian stochastic processes based on fundamental phenomenological considerations, as well as from a specific microscopic reaction-diffusion model realization. Subsequently we explain how dynamic renormalization group (RG) methods can be applied to obtain the universal properties near the critical point in an expansion about the upper critical dimensions d_c = 4 (DP) and 6 (dIP). We provide a detailed overview of results for critical exponents, scaling functions, crossover phenomena, finite-size scaling, and also briefly comment on the influence of long-range spreading, the presence of a boundary, multispecies generalizations, coupling of the order parameter to other conserved modes, and quenched disorder.
Cell-based, mathematical modeling of collective cell behavior has become a prominent tool in developmental biology. Cell-based models represent individual cells as single particles or as sets of interconnected particles, and predict the collective ce ll behavior that follows from a set of interaction rules. In particular, vertex-based models are a popular tool for studying the mechanics of confluent, epithelial cell layers. They represent the junctions between three (or sometimes more) cells in confluent tissues as point particles, connected using structural elements that represent the cell boundaries. A disadvantage of these models is that cell-cell interfaces are represented as straight lines. This is a suitable simplification for epithelial tissues, where the interfaces are typically under tension, but this simplification may not be appropriate for mesenchymal tissues or tissues that are under compression, such that the cell-cell boundaries can buckle. In this paper we introduce a variant of VMs in which this and two other limitations of VMs have been resolved. The new model can also be seen as on off-the-lattice generalization of the Cellular Potts Model. It is an extension of the open-source package VirtualLeaf, which was initially developed to simulate plant tissue morphogenesis where cells do not move relative to one another. The present extension of VirtualLeaf introduces a new rule for cell-cell shear or sliding, from which T1 and T2 transitions emerge naturally, allowing application of VirtualLeaf to problems of animal development. We show that the updated VirtualLeaf yields different results than the traditional vertex-based models for differential-adhesion-driven cell sorting and for the neighborhood topology of soft cellular networks.
A random growth lattice filling model of percolation with touch and stop growth rule is developed and studied numerically on a two dimensional square lattice. Nucleation centers are continuously added one at a time to the empty sites and the clusters are grown from these nucleation centers with a tunable growth probability g. As the growth probability g is varied from 0 to 1 two distinct regimes are found to occur. For gle 0.5, the model exhibits continuous percolation transitions as ordinary percolation whereas for gge 0.8 the model exhibits discontinuous percolation transitions. The discontinuous transition is characterized by discontinuous jump in the order parameter, compact spanning cluster and absence of power law scaling of cluster size distribution. Instead of a sharp tricritical point, a tricritical region is found to occur for 0.5 < g < 0.8 within which the values of the critical exponents change continuously till the crossover from continuous to discontinuous transition is completed.
277 - N. Dupuis , K. Sengupta 2008
The non-perturbative renormalization-group approach is extended to lattice models, considering as an example a $phi^4$ theory defined on a $d$-dimensional hypercubic lattice. Within a simple approximation for the effective action, we solve the flow e quations and obtain the renormalized dispersion $eps(q)$ over the whole Brillouin zone of the reciprocal lattice. In the long-distance limit, where the lattice does not matter any more, we reproduce the usual flow equations of the continuum model. We show how the numerical solution of the flow equations can be simplified by expanding the dispersion in a finite number of circular harmonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا