ﻻ يوجد ملخص باللغة العربية
A coupled quantum dot--nanocavity system in the weak coupling regime of cavity quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a $f_{rm SAW}simeq800,mathrm{MHz}$ surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function $g^{(2)}$. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of $g^{(2)}$, demonstrating high fidelity regulation of the stream of single photons emitted by the system.
We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The elect
We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for non-classical light generation. By performin
We use the third- and fourth-order autocorrelation functions $g^{(3)}(tau_1,tau_2)$ and $g^{(4)}(tau_1,tau_2, tau_3)$ to detect the non-classical character of the light transmitted through a photonic-crystal nanocavity containing a strongly-coupled q
Scalable quantum photonic architectures demand highly efficient, high-purity single-photon sources, which can be frequency matched via external tuning. We demonstrate a single-photon source based on an InAs quantum dot embedded in a micropillar reson
Using background-free detection of spin-state-dependent resonance fluorescence from a single-electron charged quantum dot with an efficiency of 0:1%, we realize a single spin-photon interface where the detection of a scattered photon with 300 picosec