ﻻ يوجد ملخص باللغة العربية
The macromolecules that encode and translate information in living systems, DNA and RNA, exhibit distinctive structural asymmetries, including homochirality or mirror image asymmetry and $3 - 5$ directionality, that are invariant across all life forms. The evolutionary advantages of these broken symmetries remain unknown. Here we utilize a very simple model of hypothetical self-replicating polymers to show that asymmetric autocatalytic polymers are more successful in self-replication compared to their symmetric counterparts in the Darwinian competition for space and common substrates. This broken-symmetry property, called asymmetric cooperativity, arises with the maximization of a replication potential, where the catalytic influence of inter-strand bonds on their left and right neighbors is unequal. Asymmetric cooperativity also leads to tentative, qualitative and simple evolution-based explanations for a number of other properties of DNA that include four nucleotide alphabet, three nucleotide codons, circular genomes, helicity, anti-parallel double-strand orientation, heteromolecular base-pairing, asymmetric base compositions, and palindromic instability, apart from the structural asymmetries mentioned above. Our model results and tentative explanations are consistent with multiple lines of experimental evidence, which include evidence for the presence of asymmetric cooperativity in DNA.
Due to the asymmetric nature of the nucleotides, the extant informational biomolecule, DNA, is constrained to replicate unidirectionally on a template. As a product of molecular evolution that sought to maximize replicative potential, DNAs unidirecti
The problem of DNA-DNA interaction mediated by divalent counterions is studied using computer simulation. Although divalent counterions cannot condense free DNA molecules in solution, we show that if DNA configurational entropy is restricted, divalen
Topology affects physical and biological properties of DNA and impacts fundamental cellular processes, such as gene expression, genome replication, chromosome structure and segregation. In all organisms DNA topology is carefully modulated and the sup
Statistics of Poincare recurrences is studied for the base-pair breathing dynamics of an all-atom DNA molecule in realistic aqueous environment with thousands of degrees of freedom. It is found that at least over five decades in time the decay of rec
Molecular chaperones are ATP-consuming biological machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states for long times. Unassisted folding occurs by the kinetic partitioning mechanism ac