ترغب بنشر مسار تعليمي؟ اضغط هنا

Reentrant behavior of divalent counterion mediated DNA-DNA electrostatic interaction

127   0   0.0 ( 0 )
 نشر من قبل Toan T. Nguyen
 تاريخ النشر 2009
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of DNA-DNA interaction mediated by divalent counterions is studied using computer simulation. Although divalent counterions cannot condense free DNA molecules in solution, we show that if DNA configurational entropy is restricted, divalent counterions can cause DNA reentrant condensation similar to that caused by tri- or tetra-valent counterions. DNA-DNA interaction is strongly repulsive at small or large counterion concentration and is negligible or slightly attractive for a concentration in between. Implications of our results to experiments of DNA ejection from bacteriophages are discussed. The quantitative result serves to understand electrostatic effects in other experiments involving DNA and divalent counterions.



قيم البحث

اقرأ أيضاً

310 - Toan T. Nguyen 2015
The problem of DNA$-$DNA interaction mediated by divalent counterions is studied using a generalized Grand-canonical Monte-Carlo simulation for a system of two salts. The effect of the divalent counterion size on the condensation behavior of the DNA bundle is investigated. Experimentally, it is known that multivalent counterions have strong effect on the DNA condensation phenomenon. While tri- and tetra-valent counterions are shown to easily condense free DNA molecules in solution into toroidal bundles, the situation with divalent counterions are not as clear cut. Some divalent counterions like Mg$^{+2}$ are not able to condense free DNA molecules in solution, while some like Mn$^{+2}$ can condense them into disorder bundles. In restricted environment such as in two dimensional system or inside viral capsid, Mg$^{+2}$ can have strong effect and able to condense them, but the condensation varies qualitatively with different system, different coions. It has been suggested that divalent counterions can induce attraction between DNA molecules but the strength of the attraction is not strong enough to condense free DNA in solution. However, if the configuration entropy of DNA is restricted, these attractions are enough to cause appreciable effects. The variations among different divalent salts might be due to the hydration effect of the divalent counterions. In this paper, we try to understand this variation using a very simple parameter, the size of the divalent counterions. We investigate how divalent counterions with different sizes can leads to varying qualitative behavior of DNA condensation in restricted environments. Additionally a Grand canonical Monte-Carlo method for simulation of systems with two different salts is presented in detail.
The effective DNA-DNA interaction force is calculated by computer simulations with explicit tetravalent counterions and monovalent salt. For overcharged DNA molecules, the interaction force shows a double-minimum structure. The positions and depths o f these minima are regulated by the counterion density in the bulk. Using two-dimensional lattice sum and free energy perturbation theories, the coexisting phases for DNA bundles are calculated. A DNA-condensation and redissolution transition and a stable mesocrystal with an intermediate lattice constant for high counterion concentration are obtained.
Strongly correlated electrostatics of DNA systems has drawn the interest of many groups, especially the condensation and overcharging of DNA by multivalent counterions. By adding counterions of different valencies and shapes, one can enhance or reduc e DNA overcharging. In this papers, we focus on the effect of multivalent co-ions, specifically divalent co-ions such as SO$_4^{2-}$. A computational experiment of DNA condensation using Monte$-$Carlo simulation in grand canonical ensemble is carried out where DNA system is in equilibrium with a bulk solution containing a mixture of salt of different valency of co-ions. Compared to system with purely monovalent co-ions, the influence of divalent co-ions shows up in multiple aspects. Divalent co-ions lead to an increase of monovalent salt in the DNA condensate. Because monovalent salts mostly participate in linear screening of electrostatic interactions in the system, more monovalent salt molecules enter the condensate leads to screening out of short-range DNA$-$DNA like charge attraction and weaker DNA condensation free energy. The overcharging of DNA by multivalent counterions is also reduced in the presence of divalent co$-$ions. Strong repulsions between DNA and divalent co-ions and among divalent co-ions themselves leads to a {em depletion} of negative ions near DNA surface as compared to the case without divalent co-ions. At large distance, the DNA$-$DNA repulsive interaction is stronger in the presence of divalent co$-$ions, suggesting that divalent co$-$ions role is not only that of simple stronger linear screening.
The effect of electrostatic interactions on the stretching of DNA is investigated using a simple worm like chain model. In the limit of small force there are large conformational fluctuations which are treated using a self-consistent variational appr oach. For small values of the external force f, we find theoreticlly and by a simple blob picture that the extension scales as fr_D where r_D is the Debye screening length. In the limit of large force the electrostatic effects can be accounted for within the semiflexible chain model of DNA by assuming that only small excursions from rod-like conformations are possible. In this regime the extension approaches the contour length as f^{-1/2} where f is the magnitude of the external force. The theory is used to analyze experiments that have measured the extension of double-stranded DNA subject to tension at various salt concentrations. The theory reproduces nearly quantitatively the elastic response of DNA at small and large values of f and for all concentration of the monovalent counterions. The limitations of the theory are also pointed out.
Positioning of nucleosomes along eukaryotic genomes plays an important role in their organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosom e to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study we analyzed how well nucleosomes are positioned along the DNA as a function of strength of the preferential binding, correlation length of the binding energy landscape, interactions between neighboring nucleosomes and others relevant system properties. We analyze different scenarios: designed energy landscapes and generically disordered ones and derive conditions for good positioning. Using analytic and numerical approaches we find that, even if the binding preferences are very weak, synergistic interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing empirical energy landscape, we discuss relevance of our theoretical results to positioning of nucleosomes on DNA emph{in vivo.}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا