ﻻ يوجد ملخص باللغة العربية
Reaction coordinates are widely used throughout chemical physics to model and understand complex chemical transformations. We introduce a definition of the natural reaction coordinate, suitable for condensed phase and biomolecular systems, as a maximally predictive one-dimensional projection. We then show this criterion is uniquely satisfied by a dominant eigenfunction of an integral operator associated with the ensemble dynamics. We present a new sparse estimator for these eigenfunctions which can search through a large candidate pool of structural order parameters and build simple, interpretable approximations that employ only a small number of these order parameters. Example applications with a small molecules rotational dynamics and simulations of protein conformational change and folding show that this approach can filter through statistical noise to identify simple reaction coordinates from complex dynamics.
The cell cytoskeleton is a striking example of active medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well
Homochirality, i.e. the dominance across all living matter of one enantiomer over the other among chiral molecules, is thought to be a key step in the emergence of life. Building on ideas put forward by Frank and many others, we proposed recently one
In genetic circuits, when the mRNA lifetime is short compared to the cell cycle, proteins are produced in geometrically-distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivate
While seemingly straightforward in principle, the reliable estimation of rate constants is seldom easy in practice. Numerous issues, such as the complication of poor reaction coordinates, cause obvious approaches to yield unreliable estimates. When a
How to produce expressive molecular representations is a fundamental challenge in AI-driven drug discovery. Graph neural network (GNN) has emerged as a powerful technique for modeling molecular data. However, previous supervised approaches usually su