ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of reaction step-size noise on the switching dynamics of stochastic populations

125   0   0.0 ( 0 )
 نشر من قبل Michael Assaf
 تاريخ النشر 2015
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In genetic circuits, when the mRNA lifetime is short compared to the cell cycle, proteins are produced in geometrically-distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a-priori unknown, and in general, may fluctuate in time with a given correlation time and statistics, introduces an additional non-demographic step-size noise into the system. Employing the probability generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that bursty influx exponentially decreases the mean escape time compared to the usual case of single-step influx. In particular, close to bifurcation we find a simple analytical expression for the mean escape time, which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte-Carlo simulations.



قيم البحث

اقرأ أيضاً

Noise induced changes in the critical and oscillatory behavior of a Prey-Predator system are studied using power spectrum density and Spectral Amplification Factor (SAF) analysis. In the absence of external noise, the population densities exhibit thr ee kinds of asymptotic behavior, namely: Absorbing State, Fixed Point (FP) and an Oscillatory Regime (OR) with a well defined proper (natural) frequency. The addition of noise destabilizes the FP phase inducing a transition to a new OR. Surprisingly, it is found that when a periodic signal is added to the control parameter, the system responds robustly, without relevant changes in its behavior. Nevertheless, the Coherent Stochastic Resonance phenomenon is found only at the proper frequency. Also, a method based on SAF allows us to locate very accurately the transition points between the different regimes.
73 - Shay Beer , Michael Assaf 2016
Recently, a first step was made by the authors towards a systematic investigation of the effect of reaction-step-size noise - uncertainty in the step size of the reaction - on the dynamics of stochastic populations. This was done by investigating the effect of bursty influx on the switching dynamics of stochastic populations. Here we extend this formalism to account for bursty reproduction processes, and improve the accuracy of the formalism to include subleading-order corrections. Bursty reproduction appears in various contexts, where notable examples include bursty viral production from infected cells, and reproduction of mammals involving varying number of offspring. The main question we quantitatively address is how bursty reproduction affects the overall fate of the population. We consider two complementary scenarios: population extinction and population survival; in the former a population gets extinct after maintaining a long-lived metastable state, whereas in the latter a population proliferates despite undergoing a deterministic drift towards extinction. In both models reproduction occurs in bursts, sampled from an arbitrary distribution. In the extinction problem, we show that bursty reproduction broadens the quasi-stationary distribution of population sizes in the metastable state, which results in an exponential decrease of the mean time to extinction. In the survival problem, bursty reproduction yields an exponential increase in survival probability of the population. Close to the bifurcation limit our analytical results simplify considerably and are shown to depend solely on the mean and variance of the burst-size distribution. Our formalism is demonstrated on several realistic distributions which all compare well with numerical Monte-Carlo simulations.
We study simple stochastic scenarios, based on birth-and-death Markovian processes, that describe populations with Allee effect, to account for the role of demographic stochasticity. In the mean-field deterministic limit we recover well-known determi nistic evolution equations widely employed in population ecology. The mean-time to extinction is in general obtained by the Wentzel-Kramers-Brillouin (WKB) approximation for populations with strong and weak Allee effects. An exact solution for the mean time to extinction can be found via a recursive equation for special cases of the stochastic dynamics. We study the conditions for the validity of the WKB solution and analyze the boundary between the weak and strong Allee effect by comparing exact solutions with numerical simulations.
The position of a reaction front, propagating into a metastable state, fluctuates because of the shot noise of reactions and diffusion. A recent theory [B. Meerson, P.V. Sasorov, and Y. Kaplan, Phys. Rev. E 84, 011147 (2011)] gave a closed analytic e xpression for the front diffusion coefficient in the weak noise limit. Here we test this theory in stochastic simulations involving reacting and diffusing particles on a one-dimensional lattice. We also investigate a small noise-induced systematic shift of the front velocity compared to the prediction from the spatially continuous deterministic reaction-diffusion equation.
We develop a new perturbation method for studying quasi-neutral competition in a broad class of stochastic competition models, and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain gener alization of the stochastic Susceptible-Infected-Susceptible (SIS) model. Here we extend previous results due to Parsons and Quince (2007), Parsons et al (2008) and Lin, Kim and Doering (2012). The second model, a two-strain generalization of the stochastic Susceptible-Infected-Recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of sub-population sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the sub-populations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically typical initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا