ﻻ يوجد ملخص باللغة العربية
We report a combined experimental and theoretical study of non-conventional lasing from higher multi-exciton states of a few quantum dot-photonic crystal nanocavity. We show that the photon output is fed from saturable quantum emitters rather than a non-saturable background despite being rather insensitive to the spectral position of the mode. Although the exciton transitions of each quantum dot are detuned by up to $160$ cavity linewidths, we observe that strong excitation populates a multitude of closely spaced multi-exciton states, which partly overlap spectrally with the mode. The limited number of emitters is confirmed by a complete saturation of the mode intensity at strong pumping, providing sufficient gain to reach stimulated emission, whilst being accompanied by a distinct lasing threshold. Detailed second-order photon-correlation measurements unambiguously identify the transition to lasing for strong pumping and, most remarkably, reveal super-thermal photon bunching with $g^{(2)}(0)>2$ below lasing threshold. Based on our microscopic theory, a pump-rate dependent $beta$-factor $beta(P)$ is needed to describe the nanolaser and account for the interplay of multi-exciton transitions in the few-emitter gain medium. Moreover, we theoretically predict that the super-thermal bunching is related to dipole-anticorrelated multi-exciton recombination channels via sub- and super-radiant coupling below and above lasing threshold, respectively. Our results provide new insights into the microscopic light-matter-coupling of spatially separated emitters coupled to a common cavity mode and, thus, provides a complete understanding of stimulated emission in nanolasers with discrete emitters.
We report a 2mu m ultrafast solid-state Tm:Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited~410fs pulses, with a spectral width~11.1nm at 2067nm. The maximum average output power is 270mW, at a pulse repetition frequenc
We use multi-pulse dynamical decoupling to increase the coherence lifetime (T2) of large numbers of nitrogen-vacancy (NV) electronic spins in room temperature diamond, thus enabling scalable applications of multi-spin quantum information processing a
We propose a state of excitonic solid for double layer two dimensional electron hole systems in transition metal dicalcogenides stacked on opposite sides of thin layers of BN. Properties of the exciton lattice such as its Lindemann ratio and possible
The quantum coherence of electronic quasiparticles underpins many of the emerging transport properties of conductors at small scales. Novel electronic implementations of quantum optics devices are now available with perspectives such as flying qubit
We analyze the dynamics of a continuously observed, damped, microwave driven solid state charge qubit. The qubit consists of a single electron in a double well potential, coupled to an oscillating electric field, and which is continuously observed by