ﻻ يوجد ملخص باللغة العربية
The quantum coherence of electronic quasiparticles underpins many of the emerging transport properties of conductors at small scales. Novel electronic implementations of quantum optics devices are now available with perspectives such as flying qubit manipulations. However, electronic quantum interferences in conductors remained up to now limited to propagation paths shorter than $30,mu$m, independently of the material. Here we demonstrate strong electronic quantum interferences after a propagation along two $0.1,$mm long pathways in a circuit. Interferences of visibility as high as $80%$ and $40%$ are observed on electronic analogues of the Mach-Zehnder interferometer of, respectively, $24,mu$m and $0.1,$mm arm length, consistently corresponding to a $0.25,$mm electronic phase coherence length. While such devices perform best in the integer quantum Hall regime at filling factor 2, the electronic interferences are restricted by the Coulomb interaction between copropagating edge channels. We overcome this limitation by closing the inner channel in micron-scale loops of frozen internal degrees of freedom, combined with a loop-closing strategy providing an essential isolation from the environment.
We demonstrate the transmission of single electron wavepackets from a clock-controlled source through an empty high-energy edge channel. The quantum dot source is loaded with single electrons which are then emitted with high kinetic energy ($sim$150
Engineering and studying few-electron states in ballistic conductors is a key step towards understanding entanglement in quantum electronic systems. In this Letter, we introduce the intrinsic two-electron coherence of an electronic source in quantum
Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots.
Quantum information theorems state that it is possible to exploit collective quantum resources to greatly enhance the charging power of quantum batteries (QBs) made of many identical elementary units. We here present and solve a model of a QB that ca
Adiabatic evolutions find widespread utility in applications to quantum state engineering, geometric quantum computation, and quantum simulation. Although offering robustness to experimental imperfections, adiabatic processes are susceptible to decoh