ﻻ يوجد ملخص باللغة العربية
Einsteins General Relativity theory simplifies dramatically in the limit that the spacetime dimension D is very large. This could still be true in the gravity theory with higher derivative terms. In this paper, as the first step to study the gravity with a Gauss-Bonnet(GB) term, we compute the quasi-normal modes of the spherically symmetric GB black hole in the large D limit. When the GB parameter is small, we find that the non-decoupling modes are the same as the Schwarzschild case and the decoupled modes are slightly modified by the GB term. However, when the GB parameter is large, we find some novel features. We notice that there are another set of non-decoupling modes due to the appearance of a new plateau in the effective radial potential. Moreover, the effective radial potential for the decoupled vector-type and scalar-type modes becomes more complicated. Nevertheless we manage to compute the frequencies of the these decoupled modes analytically. When the GB parameter is neither very large nor very small, though analytic computation is not possible, the problem is much simplified in the large D expansion and could be numerically treated. We study numerically the vector-type quasinormal modes in this case.
We consider charged black holes in Einstein-Gauss-Bonnet Gravity with Lifshitz boundary conditions. We find that this class of models can reproduce the anomalous specific heat of condensed matter systems exhibiting non-Fermi-liquid behaviour at low t
We study the quasinormal modes of $p$-form fields in spherical black holes in $D$-dimensions. Using the spherical symmetry of the black holes and gauge symmetry, we show the $p$-form field can be expressed in terms of the coexact $p$-form and the coe
We find the equations of motion of membranes dual to the black holes in Einstein-Gauss-Bonnet (EGB) gravity to leading order in 1/D in the large D regime. We also find the metric solutions to the EGB equations to first subleading order in 1/D in term
Four-dimensional $mathcal{N}=4$ supersymmetric Yang-Mills theory, at a point on the Coulomb branch where $SU(N)$ gauge symmetry is spontaneously broken to $SU(N-1)times U(1)$, admits BPS solitons describing a spherical shell of electric and/or magnet
We construct uniform black-string solutions in Einstein-Gauss-Bonnet gravity for all dimensions $d$ between five and ten and discuss their basic properties. Closed form solutions are found by taking the Gauss-Bonnet term as a perturbation from pure E