ترغب بنشر مسار تعليمي؟ اضغط هنا

The large D Membrane Paradigm For Einstein-Gauss-Bonnet Gravity

242   0   0.0 ( 0 )
 نشر من قبل Arunabha Saha
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Arunabha Saha




اسأل ChatGPT حول البحث

We find the equations of motion of membranes dual to the black holes in Einstein-Gauss-Bonnet (EGB) gravity to leading order in 1/D in the large D regime. We also find the metric solutions to the EGB equations to first subleading order in 1/D in terms of membrane variables. We propose a world volume stress tensor for the membrane whose conservation equations are equivalent to the leading order membrane equations. We also work out the light quasi-normal mode spectrum of static black holes in EGB gravity from the linearised fluctuations of static, round membranes. Also, the effective equations for stationary black holes and the spectrum of linearised spectrum about black string configurations has been obtained using the membrane equation for EGB gravity.All our results are worked out to linear order in the Gauss-Bonnet parameter.



قيم البحث

اقرأ أيضاً

In this work we show that Einstein gravity in four dimensions can be consistently obtained from the compactification of a generic higher curvature Lovelock theory in dimension $D=4+p$, being $pgeq1$. The compactification is performed on a direct prod uct space $mathcal{M}_D=mathcal{M}_4timesmathcal{K}^p$, where $mathcal{K}^p$ is a Euclidean internal manifold of constant curvature. The process is carried out in such a way that no fine tuning between the coupling constants is needed. The compactification requires to dress the internal manifold with the flux of suitable $p$-forms whose field strengths are proportional to the volume form of the internal space. We explicitly compactify Einstein-Gauss-Bonnet theory from dimension six to Einstein theory in dimension four and sketch out a similar procedure for this compactification to take place starting from dimension five. Several black string/p-branes solutions are constructed, among which, a five dimensional asymptotically flat black string composed of a Schwarzschild black hole on the brane is particularly interesting. Finally, the thermodynamic of the solutions is described and we find that the consistent compactification modifies the entropy by including a constant term, which may induce a departure from the usual behavior of the Hawking-Page phase transition. New scenarios are possible in which large black holes dominate the canonical ensamble for all temperatures above the minimal value.
We study $SO(d+1)$ invariant solutions of the classical vacuum Einstein equations in $p+d+3$ dimensions. In the limit $d to infty$ with $p$ held fixed we construct a class of solutions labelled by the shape of a membrane (the event horizon), together with a `velocity field that lives on this membrane. We demonstrate that our metrics can be corrected to nonsingular solutions at first sub-leading order in $frac{1}{d}$ if and only if the membrane shape and `velocity field obey equations of motion which we determine. These equations define a well posed initial value problem for the membrane shape and this `velocity and so completely determinethe dynamics of the black hole. They may be viewed as governing the non-linear dynamics of the light quasi normal modes of Emparan, Suzuki and Tanabe.
We investigate the neutral AdS black-hole solution in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity proposed in [K. Aoki, M.A. Gorji, and S. Mukohyama, Phys. Lett. B {bf 810}, 135843 (2020)] and construct the gravity duals of ($2+1$)-di mensional superconductors with Gauss-Bonnet corrections in the probe limit. We find that the curvature correction has a more subtle effect on the scalar condensates in the s-wave superconductor in ($2+1$)-dimensions, which is different from the finding in the higher-dimensional superconductors that the higher curvature correction makes the scalar hair more difficult to be developed in the full parameter space. However, in the p-wave case, we observe that the higher curvature correction always makes it harder for the vector condensates to form in various dimensions. Moreover, we note that the higher curvature correction results in the larger deviation from the expected relation in the gap frequency $omega_g/T_capprox 8$ in both ($2+1$)-dimensional s-wave and p-wave models.
Recently it has been argued that in Einstein gravity Anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dime nsions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass/energy content of the spacetime is too small, thereby restoring the stability of AdS spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.
We construct the holographic superconductors away from the probe limit in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity. We observe that, both for the ground state and excited states, the critical temperature first decreases then increa ses as the curvature correction tends towards the Chern-Simons limit in a backreaction dependent fashion. However, the decrease of the backreaction, the increase of the scalar mass, or the increase of the number of nodes will weaken this subtle effect of the curvature correction. Moreover, for the curvature correction approaching the Chern-Simons limit, we find that the gap frequency $omega_g/T_c$ of the conductivity decreases first and then increases when the backreaction increases in a scalar mass dependent fashion, which is different from the finding in the ($3+1$)-dimensional superconductors that increasing backreaction increases $omega_g/T_c$ in the full parameter space. The combination of the Gauss-Bonnet gravity and backreaction provides richer physics in the scalar condensates and conductivity in the ($2+1$)-dimensional superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا