ﻻ يوجد ملخص باللغة العربية
We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups $R_B$ above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of $R_B$ are then re-scaled to the observed RGO group number $R_A$ using a variety of regression techniques. It is found that a very high correlation between $R_A$ and $R_B$ ($r_{AB}$ > 0.98) does not prevent large errors in the intercalibration (e.g. sunspot maximum values can be over 30% too large even for such levels of $r_{AB}$). In generating the backbone sunspot number, Svalgaard and Schatten [2015] force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (Q-Q) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.
More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies $foF2$ had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of $f
We use 5 test data series to quantify putative discontinuities around 1946 in 5 annual-mean sunspot number or group number sequences. The series tested are: the original and n
We compare four sunspot-number data sequences against geomagnetic and terrestrial auroral observations. The comparisons are made for the original SIDC composite of Wolf-Zurich-International sunspot number [$R_{ISNv1}$], the group sunspot number [$R_{
New sunspot data composites, some of which are radically different in the character of their long-term variation, are evaluated over the interval 1845-2014. The method commonly used to calibrate historic sunspot data, relative to modern-day data, is
The Sun exhibits a well-observed modulation in the number of spots on its disk over a period of about 11 years. From the dawn of modern observational astronomy sunspots have presented a challenge to understanding -- their quasi-periodic variation in