ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests of sunspot number sequences: 4. Discontinuities around 1946 in various sunspot number and sunspot group number reconstructions

76   0   0.0 ( 0 )
 نشر من قبل Mike Lockwood Prof.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use 5 test data series to quantify putative discontinuities around 1946 in 5 annual-mean sunspot number or group number sequences. The series tested are: the original and n



قيم البحث

اقرأ أيضاً

More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies $foF2$ had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of $f oF2$ to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and abrupt changes in the fit residuals over Solar Cycles 17 - 21. Polynomial fits are made both with and without allowance for the white-light facular area, which has been reported as being associated with cycle-to-cycle changes in the sunspot number - $foF2$ relationship. Over the interval studied here, the ISN, $R$, the backbone group number $Rbb$, and the corrected number $Rc$ largely differ in their allowance for the Waldmeier discontinuity around 1945 (the correction factor for which for $R$, $Rbb$ and $Rc$ is, respectively, zero, effectively over 20%, and explicitly 11.6%). It is shown that for Solar Cycles 18 - 21, all three sunspot data sequences perform well, but that the fit residuals are lowest and most uniform for $Rbb$. We here use $foF2$ for those UTs for which $R$, $Rbb$, and $Rc$ all give correlations exceeding 0.99 for intervals both before and after the Waldmeier discontinuity. The error introduced by the Waldmeier discontinuity causes $R$ to underestimate the fitted values based on the $foF2$ data for 1932 - 1945 but $Rbb$ overestimates them by almost the same factor, implying that the correction for the Waldmeier discontinuity inherent in $Rbb$ is too large by a factor of two. Fit residuals are smallest and most uniform for $Rc$ and the ionospheric data support the optimum discontinuity multiplicative correction factor derived from the independent Royal Greenwich Observatory (RGO) sunspot group data for the same interval.
We compare four sunspot-number data sequences against geomagnetic and terrestrial auroral observations. The comparisons are made for the original SIDC composite of Wolf-Zurich-International sunspot number [$R_{ISNv1}$], the group sunspot number [$R_{ G}$] by Hoyt and Schatten (Solar Phys., 1998), the new backbone group sunspot number [$R_{BB}$] by Svalgaard and Schatten (Solar Phys., 2016), and the corrected sunspot number [$R_{C}$] by Lockwood at al. (J.G.R., 2014). Each sunspot number is fitted with terrestrial observations, or parameters derived from terrestrial observations to be linearly proportional to sunspot number, over a 30-year calibration interval of 1982-2012. The fits are then used to compute test sequences, which extend further back in time and which are compared to $R_{ISNv1}$, $R_{G}$, $R_{BB}$, and $R_{C}$. To study the long-term trends, comparisons are made using averages over whole solar cycles (minimum-to-minimum). The test variations are generated in four ways: i) using the IDV(1d) and IDV geomagnetic indices (for 1845-2013) fitted over the calibration interval using the various sunspot numbers and the phase of the solar cycle; ii) from the open solar flux (OSF) generated for 1845 - 2013 from four pairings of geomagnetic indices by Lockwood et al. (Ann. Geophys., 2014) and analysed using the OSF continuity model of Solanki at al. (Nature, 2000) which employs a constant fractional OSF loss rate; iii) the same OSF data analysed using the OSF continuity model of Owens and Lockwood (J.G.R., 2012) in which the fractional loss rate varies with the tilt of the heliospheric current sheet and hence with the phase of the solar cycle; iv) the occurrence frequency of low-latitude aurora for 1780-1980 from the survey of Legrand and Simon (Ann. Geophys., 1987). For all cases, $R_{BB}$ exceeds the test terrestrial series by an amount that increases as one goes back in time.
We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups $R_B$ above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of $R_B$ are then re-scaled to the observed RGO group number $R_A$ using a variety of regression techniques. It is found that a very high correlation between $R_A$ and $R_B$ ($r_{AB}$ > 0.98) does not prevent large errors in the intercalibration (e.g. sunspot maximum values can be over 30% too large even for such levels of $r_{AB}$). In generating the backbone sunspot number, Svalgaard and Schatten [2015] force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (Q-Q) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.
166 - R. Leussu , I.G. Usoskin , R. Arlt 2013
Aims. Sunspot number is a benchmark series in many studies, but may still contain inhomogeneities and inconsistencies. In particular, an essential discrepancy exists between the two main sunspot number series, Wolf (WSN) and group (GSN) sunspot numbe rs, before 1848. The source of this discrepancy has so far remained unresolved. However, the recently digitized series of solar observations in 1825-1867 by Samuel Heinrich Schwabe, who was the primary observer of the WSN before 1848, makes such an assessment possible. Methods. We construct sunspot series, similar to WSN and GSN, but using only Schwabes data. These series, called WSN-S and GSN-S, respectively, were compared with the original WSN and GSN series for the period 1835-1867 to look for possible inhomogeneities. Results. We show that: (1) The GSN series is homogeneous and consistent with the Schwabe data throughout the entire studied period; (2) The WSN series decreases by roughly ~20% around 1848 caused by the change of the primary observer from Schwabe to Wolf and an inappropriate individual correction factor used for Schwabe in the WSN; (3) This implies a major inhomogeneity in the WSN, which needs to be corrected by reducing its values by 20% before 1848; (4) The corrected WSN series is in good agreement with the GSN series. This study supports the earlier conclusions that the GSN series is more consistent and homogeneous in the earlier part than the WSN series.
The Sun exhibits a well-observed modulation in the number of spots on its disk over a period of about 11 years. From the dawn of modern observational astronomy sunspots have presented a challenge to understanding -- their quasi-periodic variation in number, first noted 175 years ago, stimulates community-wide interest to this day. A large number of techniques are able to explain the temporal landmarks, (geometric) shape, and amplitude of sunspot cycles, however forecasting these features accurately in advance remains elusive. Recent observationally-motivated studies have illustrated a relationship between the Suns 22-year (Hale) magnetic cycle and the production of the sunspot cycle landmarks and patterns, but not the amplitude of the sunspot cycle. Using (discrete) Hilbert transforms on more than 270 years of (monthly) sunspot numbers we robustly identify the so-called termination events that mark the end of the previous 11-yr sunspot cycle, the enhancement/acceleration of the present cycle, and the end of 22-yr magnetic activity cycles. Using these we extract a relationship between the temporal spacing of terminators and the magnitude of sunspot cycles. Given this relationship and our prediction of a terminator event in 2020, we deduce that Sunspot Cycle 25 could have a magnitude that rivals the top few since records began. This outcome would be in stark contrast to the community consensus estimate of sunspot cycle 25 magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا