ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice study of the scalar and baryon spectra in many-flavor QCD

334   0   0.0 ( 0 )
 نشر من قبل Hiroshi Ohki
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the search for a composite Higgs boson in walking technicolor models, many flavor QCD, in particular with $N_f=8$, is an attractive candidate, and has been found to have a composite flavor-singlet scalar as light as the pion. Based on lattice simulations of this theory with the HISQ action, we will present our preliminary results on the scalar decay constant using the fermionic bilinear operator, and on the mass of the lightest baryon state which could be a dark matter candidate. Combining these two results, implications for dark matter direct detection are also discussed.



قيم البحث

اقرأ أيضاً

Based on lattice simulations using highly improved staggered quarks for twelve-flavor QCD with several bare fermion masses, we observe a flavor-singlet scalar state lighter than the pion in the correlators of fermionic interpolating operators. The sa me state is also investigated using correlators of gluonic interpolating operators. Combined with our previous study, that showed twelve-flavor QCD to be consistent with being in the conformal window, we infer that the lightness of the scalar state is due to infrared conformality. This result shed some light on the possibility of a light composite Higgs boson (technidilaton) in walking technicolor theories.
We present the first observation of a flavor-singlet scalar meson as light as the pion in $N_f=8$ QCD on the lattice, using the Highly Improved Staggered Quark action. Such a light scalar meson can be regarded as a composite Higgs with mass 125 GeV. In accord with our previous lattice results showing that the theory exhibits walking behavior, the light scalar may be a technidilaton, a pseudo Nambu-Goldstone boson of the approximate scale symmetry in walking technicolor.
We study infrared conformality of the twelve-flavor QCD on the lattice. Utilizing the highly improved staggered quarks (HISQ) type action which is useful to study the continuum physics, we analyze the lattice data of the mass and the decay constant o f a pseudoscalar meson and the mass of a vector meson as well at several values of lattice spacing and fermion mass. Our result is consistent with the conformal hypothesis for the mass anomalous dimension $gamma_m sim 0.4-0.5$.
In search for a composite Higgs boson (techni-dilaton) in the walking technicolor, we present our preliminary results on the first observation of a light flavor-singlet scalar in a candidate theory for the walking technicolor, the Nf=8 QCD, which was found in our previous paper to have spontaneous chiral symmetry breaking together with remnants of the conformality. Based on simulations with the HISQ-type action on several lattice sizes with various fermion masses, we find evidence of a flavor-singlet scalar meson with mass comparable to that of the Nambu-Goldstone pion in both the small fermion-mass region, where chiral perturbation theory works, and the intermediate fermion-mass region where the hyperscaling relation holds. We further discuss its chiral limit extrapolation in comparison with other states studied in our previous paper: the scalar has a mass much smaller than that of the vector meson, which is compared to the Nambu-Goldstone pion having a vanishing mass in that limit.
We present our result of the many-flavor QCD. Information of the phase structure of many-flavor SU(3) gauge theory is of great interest, since the gauge theories with the walking behavior near the infrared fixed point are candidates of new physics fo r the origin of the dynamical electroweak symmetry breaking. We study the SU(3) gauge theories with 12 and 16 fundamental fermions. Utilizing the HISQ type action which is useful to study the continuum physics, we analyze the lattice data of the mass and the decay constant of the pseudoscalar meson and the mass of the vector meson as well at several values of lattice spacing and fermion mass. The finite size scaling test in the conformal hypothesis is also performed. Our data is consistent with the conformal scenario for Nf=12. We obtain the mass anomalous dimension $gamma_m sim 0.4-0.5$. An update of $N_f=16$ study is also shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا