ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice study of conformality in twelve-flavor QCD

111   0   0.0 ( 0 )
 نشر من قبل Hiroshi Ohki
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study infrared conformality of the twelve-flavor QCD on the lattice. Utilizing the highly improved staggered quarks (HISQ) type action which is useful to study the continuum physics, we analyze the lattice data of the mass and the decay constant of a pseudoscalar meson and the mass of a vector meson as well at several values of lattice spacing and fermion mass. Our result is consistent with the conformal hypothesis for the mass anomalous dimension $gamma_m sim 0.4-0.5$.



قيم البحث

اقرأ أيضاً

Based on lattice simulations using highly improved staggered quarks for twelve-flavor QCD with several bare fermion masses, we observe a flavor-singlet scalar state lighter than the pion in the correlators of fermionic interpolating operators. The sa me state is also investigated using correlators of gluonic interpolating operators. Combined with our previous study, that showed twelve-flavor QCD to be consistent with being in the conformal window, we infer that the lightness of the scalar state is due to infrared conformality. This result shed some light on the possibility of a light composite Higgs boson (technidilaton) in walking technicolor theories.
We report the calculation of the flavor-singlet scalar in the SU(3) gauge theory with the degenerate twelve fermions in the fundamental representation using a HISQ-type action at a fixed $beta$. In order to reduce the large statistical error coming f rom the vacuum-subtracted disconnected correlator, we employ a noise reduction method and a large number of configurations. We observe that the flavor-singlet scalar is lighter than the pion in this theory from the calculations with the fermion bilinear and gluonic operators. This peculiar feature is considered to be due to the infrared conformality of this theory, and it is a promissing signal for a walking technicolor, where a light composite Higgs boson is expected to emerge by approximate conformal dynamics.
In the search for a composite Higgs boson in walking technicolor models, many flavor QCD, in particular with $N_f=8$, is an attractive candidate, and has been found to have a composite flavor-singlet scalar as light as the pion. Based on lattice simu lations of this theory with the HISQ action, we will present our preliminary results on the scalar decay constant using the fermionic bilinear operator, and on the mass of the lightest baryon state which could be a dark matter candidate. Combining these two results, implications for dark matter direct detection are also discussed.
We evaluate the strangeness-conserving $N N$, $SigmaSigma$, $XiXi$, $LambdaSigma$ and the strangeness-changing $Lambda N$, $Sigma N$, $LambdaXi$, $SigmaXi$ axial charges in lattice QCD with two flavors of dynamical quarks and extend our previous work on pseudoscalar-meson-octet-baryon coupling constants so as to include $piXiXi$, $KLambdaXi$ and $KSigmaXi$ coupling constants. We find that the axial charges have rather weak quark-mass dependence and the breaking in SU(3)-flavor symmetry is small at each quark-mass point we consider.
138 - J. Noaki , S. Aoki , T.W. Chiu 2008
We test the convergence property of the chiral perturbation theory (ChPT) using a lattice QCD calculation of pion mass and decay constant with two dynamical quark flavors. The lattice calculation is performed using the overlap fermion formulation, wh ich realizes exact chiral symmetry at finite lattice spacing. By comparing various expansion prescriptions, we find that the chiral expansion is well saturated at the next-to-leading order (NLO) for pions lighter than $sim$450 MeV. Better convergence behavior is found in particular for a resummed expansion parameter $xi$, with which the lattice data in the pion mass region 290$sim$750 MeV can be fitted well with the next-to-next-to-leading order (NNLO) formulae. We obtain the results in two-flavor QCD for the low energy constants $bar{l}_3$ and $bar{l}_4$ as well as the pion decay constant, the chiral condensate, and the average up and down quark mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا