ﻻ يوجد ملخص باللغة العربية
Any isotropy violating phenomena on cosmic microwave background (CMB) induces off-diagonal correlations in the two-point function. These correlations themselves can be used to estimate the underlying anisotropic signals. Masking due to residual foregrounds, or availability of partial sky due to survey limitation, are unavoidable circumstances in CMB studies. But, masking induces additional correlations, and thus complicates the recovery of such signals. In this work, we discuss a procedure based on bipolar spherical harmonic (BipoSH) formalism to comprehensively addresses any spurious correlations induced by masking and successfully recover hidden signals of anisotropy in observed CMB maps. This method is generic, and can be applied to recover a variety of isotropy violating phenomena. Here, we illustrate the procedure by recovering the subtle Doppler boost signal from simulated boosted CMB skies, which has become possible with the unprecedented full-sky sensitivity of PLANCK probe.
Statistical isotropy (SI) is one of the fundamental assumptions made in cosmological model building. This assumption is now being rigorously tested using the almost full sky measurements of the CMB anisotropies. A major hurdle in any such analysis is
A crucial problem for partial sky analysis of CMB polarization is the $E$-$B$ leakage problem. Such leakage arises from the presence of `ambiguous modes that satisfy properties of both $E$ and $B$ modes. Solving this problem is critical for primordia
Beam asymmetries result in statistically-anisotropic cosmic microwave background (CMB) maps. Typically, they are studied for their effects on the CMB power spectrum, however they more closely mimic anisotropic effects such as gravitational lensing an
Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity
The method of weighted addition of multi-frequency maps, more commonly referred to as {it Internal Linear Combination} (ILC), has been extensively employed in the measurement of cosmic microwave background (CMB) anisotropies and its secondaries along