ﻻ يوجد ملخص باللغة العربية
A crucial problem for partial sky analysis of CMB polarization is the $E$-$B$ leakage problem. Such leakage arises from the presence of `ambiguous modes that satisfy properties of both $E$ and $B$ modes. Solving this problem is critical for primordial polarization $B$ mode detection in partial sky CMB polarization experiments. In this work we introduce a new method for reducing the leakage. We demonstrate that if we complement the $E$-mode information outside the observation patch with ancillary data from full-sky CMB observations, we can reduce and even effectively remove the $E$-to-$B$ leakage. For this objective, we produce $E$-mode Stokes $QU$ maps from Wiener filtered full-sky intensity and polarization CMB observations. We use these maps to fill the sky region that is not observed by the ground-based experiment of interest, and thus complement the partial sky Stokes $QU$ maps. Since the $E$-mode information is now available on the full sky we see a significant reduction in the $E$-to-$B$ leakage. We evaluate on simulated data sets the performance of our method for a `shallow $f_text{sky}=8%$, and a `deep $f_text{sky}=2%$ northern hemisphere sky patch, with AliCPT-like properties, and a LSPE-like $f_text{sky}=30%$ sky patch, by combining those observations with Planck-like full sky polarization maps. We find that our method outperforms the standard and the pure-$B$ method pseudo-$C_ell$ estimators for all of our simulations. Our new method gives unbiased estimates of the $B$-mode power spectrum through-out the entire multipole range with near-optimal pseudo-$C_ell$ errors for $ell>20$. We also study the application of our method to the CMB-S4 experiment combined with LiteBIRD-like full sky data, and show that using signal-dominated full sky $E$-mode data we can eliminate the $E$-to-$B$ leakage problem.
Any isotropy violating phenomena on cosmic microwave background (CMB) induces off-diagonal correlations in the two-point function. These correlations themselves can be used to estimate the underlying anisotropic signals. Masking due to residual foreg
We present an augmented version of our dual messenger algorithm for spin field reconstruction on the sphere, while accounting for highly non-trivial and realistic noise models such as modulated correlated noise. We also describe an optimization metho
BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this
QUIJOTE (Q-U-I JOint TEnerife) is an experiment designed to achieve CMB B-mode polarization detection and sensitive enough to detect a primordial gravitational-wave component if the B-mode amplitude is larger than r = 0.05. It consists in two telesco
We investigate the performance of a simple Bayesian fitting approach to correct the cosmic microwave background (CMB) B-mode polarization for gravitational lensing effects in the recovered probability distribution of the tensor-to-scalar ratio. We pe