ﻻ يوجد ملخص باللغة العربية
Malaria is a mosquito-borne, lethal disease that affects millions and kills hundreds of thousands of people each year. In this paper, we develop a model for allocating malaria interventions across geographic regions and time, subject to budget constraints, with the aim of minimizing the number of person-days of malaria infection. The model considers a range of several conditions: climatic characteristics, treatment efficacy, distribution costs, and treatment coverage. We couple an expanded susceptible-infected-recovered (SIR) compartment model for the disease dynamics with an integer linear programming (ILP) model for selecting the disease interventions. Our model produces an intervention plan for all regions, identifying which combination of interventions, with which level of coverage, to use in each region and year in a five-year planning horizon. Simulations using the model yield high-level, qualitative insights on optimal intervention policies: The optimal policy is different when considering a five-year time horizon than when considering only a single year, due to the effects that interventions have on the disease transmission dynamics. The vaccine intervention is rarely selected, except if its assumed cost is significantly lower than that predicted in the literature. Increasing the available budget causes the number of person-days of malaria infection to decrease linearly up to a point, after which the benefit of increased budget starts to taper. The optimal policy is highly dependent on assumptions about mosquito density, selecting different interventions for wet climates with high density than for dry climates with low density, and the interventions are found to be less effective at controlling malaria in the wet climates when attainable intervention coverage is 60% or lower. However, when intervention coverage of 80% is attainable, then malaria prevalence drops quickly.
We present a new mathematical model to explicitly capture the effects that the three restriction measures: the lockdown date and duration, social distancing and masks, and, schools and border closing, have in controlling the spread of COVID-19 infect
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa
Single species population models and discrete stochastic gene frequency models are two standards of mathematical biology important for the evolution of populations. An agent based model is presented which reproduces these models and then explores whe
This paper describes a mathematical model for the spread of a virus through an isolated population of a given size. The model uses three, color-coded components, called molecules (red for infected and still contagious; green for infected, but no long
The goal of this note is to present a simple mathematical model with two parameters for the number of deaths due to the corona (COVID-19) virus. The model only requires basic knowledge in differential calculus, and can also be understood by pupils at