ﻻ يوجد ملخص باللغة العربية
We present a number of powerful local mechanisms for maintaining a dynamic swarm of robots with limited capabilities and information, in the presence of external forces and permanent node failures. We propose a set of local continuous algorithms that together produce a generalization of a Euclidean Steiner tree. At any stage, the resulting overall shape achieves a good compromise between local thickness, global connectivity, and flexibility to further continuous motion of the terminals. The resulting swarm behavior scales well, is robust against node failures, and performs close to the best known approximation bound for a corresponding centralized static optimization problem.
Robot swarms to date are not prepared for autonomous navigation such as path planning and obstacle detection in forest floor, unable to achieve low-cost. The development of depth sensing and embedded computing hardware paves the way for swarm of terr
In this paper, we develop a distributed monitoring framework for robot swarms so that the agents can monitor whether the executions of robot swarms satisfy Swarm Signal Temporal Logic (SwarmSTL) formulas. We define generalized moments (GMs) to repres
In this paper, we present algorithms for synthesizing controllers to distribute a group (possibly swarms) of homogeneous robots (agents) over heterogeneous tasks which are operated in parallel. We present algorithms as well as analysis for global and
Mobile microrobots are envisioned to be useful in a wide range of high-impact applications, many of which requiring cohesive group formation to maintain self-bounded swarms in the absence of confining boundaries. Cohesive group formation relies on a
Rapid performance recovery from unforeseen environmental perturbations remains a grand challenge in swarm robotics. To solve this challenge, we investigate a behaviour adaptation approach, where one searches an archive of controllers for potential re